Advertisement

Modeling of Fluid Flow Effects on Experiments Using Electromagnetic Levitation in Reduced Gravity

  • Gwendolyn BrackerEmail author
  • Xiao Xiao
  • Jonghyun Lee
  • Marcus Reinartz
  • Stefan Burggraf
  • Dieter Herlach
  • Markus Rettenmayr
  • Douglas Matson
  • Robert Hyers
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Electromagnetic levitation experiments provide a powerful tool that allows for the study of homogeneous nucleation, solidification and growth in a containerless processing environment. However, in these experiments it is important to understand the magnetohydrodynamic flow within the sample and the effects that this fluid flow has on the experiment. A recent solidification study found that aluminum-nickel alloy samples have an unusual growth response to the degree of undercooling. These aluminum-nickel alloys experienced a decrease in the growth velocity as the initial undercooling deepened instead of the expected increase in solidification velocity with deepening undercoolings. Current work is exploring several different theories to explain this phenomenon. Distinguishing between several of these theories requires a comprehensive understanding of the behavior of the internal fluid flow. USTIP has done flow modeling to support this and multiple other collaborators on ISS-EML. The fluid flow models presented provide critical insights into the nature of the flow within the aluminum-nickel alloy experiments conducted in the ISS-EML facility. These models have found that for this sample the RNG k-ε model should be used with this sample at temperatures greater than 1800 K and the laminar flow model should be used at temperatures lower than 1600 K.

Keywords

Aluminum-Nickel Electromagnetic levitation Containerless processing Solidification Fluid flow simulation ISS-EML 

Notes

Acknowledgements

The authors thank Stephan Schneider for his technical assistance with the ISS experimental data archives. The experiment simulated was run in the ISS-EML facility, formerly MSL-EML. Support for this project was provided through NASA grant NNX16B40G.

References

  1. 1.
    Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Springer, BostonCrossRefGoogle Scholar
  2. 2.
    Herlach DM, Cochraine RF, Egry I, Fecht HJ, Greer AL (1993) Containerless processing in the study of metallic melts and their solidifciation. Int Mater Rev 38(6):273–347CrossRefGoogle Scholar
  3. 3.
    Lengsdorf R, Holland-Moritz D, Herlach DM (2010) Anomalous dendrite growth in undercooled melts of Al–Ni alloys in relation to results obtained in reduced gravity. Scr Mater 62(6):365–367CrossRefGoogle Scholar
  4. 4.
    Reinartz M (2018) AlNi solidification velocity, 06 Aug 2018Google Scholar
  5. 5.
    Voss D (2014) SCI-ESA-HSO-ESR-EML2, no 1, p 142 15 Apr 2014Google Scholar
  6. 6.
    Egry I et al (2010) Thermophysical properties of liquid Al-Ni alloys. High Temp-High Press 38(4):343–351Google Scholar
  7. 7.
    Lee J, Matson DM, Binder S, Kolbe M, Herlach D, Hyers RW (2014) Magnetohydrodynamic modeling and experimental validation of convection inside electromagnetically levitated Co-Cu droplets. Metall Mater Trans B 45(3):1018–1023CrossRefGoogle Scholar
  8. 8.
    Hyers RW, Matson DM, Kelton KF, Rogers JR (2004) Convection in containerless processing. Ann N Y Acad Sci 1027(1):474–494CrossRefGoogle Scholar
  9. 9.
    Lohoefer G, Piller J (2002) The new ISS electromagnetic levitation facility—‘MSL-EML’”. In: 40th AIAA aerospace sciences meeting & exhibit. American Institute of Aeronautics and Astronautics, 2002Google Scholar
  10. 10.
    Bracker GP, Hyers RW (2018) fluid flow results modeling molten aluminum-nickel. University of Massachusetts, AmherstGoogle Scholar
  11. 11.
    Hyers RW, Trapaga G, Abedian B (2003) Laminar-turbulent transition in an electromagnetically levitated droplet. Metall Mater Trans B 34(1):29–36CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Gwendolyn Bracker
    • 1
    Email author
  • Xiao Xiao
    • 2
  • Jonghyun Lee
    • 3
  • Marcus Reinartz
    • 4
  • Stefan Burggraf
    • 5
  • Dieter Herlach
    • 6
  • Markus Rettenmayr
    • 4
  • Douglas Matson
    • 2
  • Robert Hyers
    • 1
  1. 1.University of MassachusettsAmherstUSA
  2. 2.Tufts UniversityMedfordUSA
  3. 3.Iowa State UniversityAmesUSA
  4. 4.Otto-Schott-Institut für MaterialforschungFriedrich-Schiller-UniversitätJenaGermany
  5. 5.Deutsches Zentrum für Luft- und RaumfahrtInstitut für Materialphysik im WeltraumCologneGermany
  6. 6.Deutsches Zentrum für Luft, Institut für Experimentalphysik IV, Institut für Materialphysik im WeltraumRuhr-Universität BochumBochumGermany

Personalised recommendations