Identifying Terrorism-Related Key Actors in Multidimensional Social Networks

  • George KalpakisEmail author
  • Theodora Tsikrika
  • Stefanos Vrochidis
  • Ioannis Kompatsiaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)


Identifying terrorism-related key actors in social media is of vital significance for law enforcement agencies and social media organizations in their effort to counter terrorism-related online activities. This work proposes a novel framework for the identification of key actors in multidimensional social networks formed by considering several different types of user relationships/interactions in social media. The framework is based on a mechanism which maps the multidimensional network to a single-layer network, where several centrality measures can then be employed for detecting the key actors. The effectiveness of the proposed framework for each centrality measure is evaluated by using well-established precision-oriented evaluation metrics against a ground truth dataset, and the experimental results indicate the promising performance of our key actor identification framework.


Multidimensional social networks Key actors Centrality measures Online terrorism 



This work was supported by the TENSOR (H2020-700024) and the PROPHETS projects (H2020-786894), both funded by the European Commission.


  1. 1.
    Aparicio, S., Villazón-Terrazas, J., Álvarez, G.: A model for scale-free networks: application to twitter. Entropy 17(8), 5848–5867 (2015)CrossRefGoogle Scholar
  2. 2.
    Azaza, L., Kirgizov, S., Savonnet, M., Leclercq, E., Faiz, R.: Influence assessment in twitter multi-relational network. In: 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 436–443. IEEE (2015)Google Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23(3), 191 (2001)CrossRefGoogle Scholar
  6. 6.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefGoogle Scholar
  7. 7.
    Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)CrossRefGoogle Scholar
  8. 8.
    Choudhary, P., Singh, U.: A survey on social network analysis for counter-terrorism. Int. J. Comput. Appl. 112(9), 24–29 (2015)Google Scholar
  9. 9.
    Coscia, M.: Multidimensional network analysis. Ph. D. thesis, Universitá Degli Studi Di Pisa, Dipartimento di Informatica (2012)Google Scholar
  10. 10.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRefGoogle Scholar
  11. 11.
    Gialampoukidis, I., Kalpakis, G., Tsikrika, T., Papadopoulos, S., Vrochidis, S.: Kompatsiaris, I.: Detection of terrorism-related twitter communities using centrality scores. In: Proceedings of the 2nd International Workshop on Multimedia Forensics and Security, pp. 21–25. ACM (2017)Google Scholar
  12. 12.
    Gialampoukidis, I., Kalpakis, G., Tsikrika, T., Vrochidis, S., Kompatsiaris, I.: Key player identification in terrorism-related social media networks using centrality measures. In: 2016 European Intelligence and Security Informatics Conference (EISIC), pp. 112–115. IEEE (2016)Google Scholar
  13. 13.
    Jabeur, L.B., Tamine, L., Boughanem, M.: Active microbloggers: identifying influencers, leaders and discussers in microblogging networks. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 111–117. Springer, Heidelberg (2012). Scholar
  14. 14.
    Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math. 2(4), 431–523 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nie, T., Guo, Z., Zhao, K., Lu, Z.M.: Using mapping entropy to identify node centrality in complex networks. Phys. A Stat. Mech. Appl. 453, 290–297 (2016)CrossRefGoogle Scholar
  16. 16.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRefGoogle Scholar
  17. 17.
    Thompson, R.L.: Radicalization and the use of social media. J. Strat. Secur. 4(4), 167 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhaoyun, D., Yan, J., Bin, Z., Yi, H.: Mining topical influencers based on the multi-relational network in micro-blogging sites. China Commun. 10(1), 93–104 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • George Kalpakis
    • 1
    Email author
  • Theodora Tsikrika
    • 1
  • Stefanos Vrochidis
    • 1
  • Ioannis Kompatsiaris
    • 1
  1. 1.Information Technologies InstituteCentre for Research and Technology HellasThermi, ThessalonikiGreece

Personalised recommendations