Advertisement

VERGE in VBS 2019

  • Stelios Andreadis
  • Anastasia Moumtzidou
  • Damianos Galanopoulos
  • Foteini Markatopoulou
  • Konstantinos Apostolidis
  • Thanassis Mavropoulos
  • Ilias Gialampoukidis
  • Stefanos Vrochidis
  • Vasileios Mezaris
  • Ioannis Kompatsiaris
  • Ioannis Patras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)

Abstract

This paper presents VERGE, an interactive video retrieval engine that enables browsing and searching into video content. The system implements various retrieval modalities, such as visual or textual search, concept detection and clustering, as well as a multimodal fusion and a reranking capability. All results are displayed in a graphical user interface in an efficient and friendly manner.

Notes

Acknowledgements

This work was supported by the EU’s Horizon 2020 research and innovation programme under grant agreements H2020-779962 V4Desi-gn, H2020-700024 TENSOR, H2020-693092 MOVING and H2020-687786 InVID.

References

  1. 1.
    Awad, G., Butt, A., Fiscus, J., et al.: TRECVID 2017: evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: Proceedings of TRECVID 2017. NIST, USA (2017)Google Scholar
  2. 2.
    Cobârzan, C., Schoeffmann, K., Bailer, W., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76(4), 5539–5571 (2017)CrossRefGoogle Scholar
  3. 3.
    Nguyen, P.A., Lu, Y.-J., Zhang, H., Ngo, C.-W.: Enhanced VIREO KIS at VBS 2018. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 407–412. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73600-6_42CrossRefGoogle Scholar
  4. 4.
    Barthel, K.U., Hezel, N., Jung, K.: Fusing keyword search and visual exploration for untagged videos. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 413–418. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73600-6_43CrossRefGoogle Scholar
  5. 5.
    Lokoč, J., Kovalčík, G., Souček, T.: Revisiting SIRET video retrieval tool. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 419–424. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73600-6_44CrossRefGoogle Scholar
  6. 6.
    Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Patt. Anal. Mach. Intell. 33(1), 117–128 (2011)CrossRefGoogle Scholar
  7. 7.
    Markatopoulou, F., Moumtzidou, A., Galanopoulos, D., et al.: ITI-CERTH participation in TRECVID 2017. In: Proceedings of TRECVID 2017 Workshop, USA (2017)Google Scholar
  8. 8.
    Markatopoulou, F., Mezaris, V., Patras, I.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circ. Syst. Video Technol. PP, 1 (2018)CrossRefGoogle Scholar
  9. 9.
    Over, P., et al.: TRECVID 2013 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In: Proceedings of TRECVID 2013 Workshop, USA (2013)Google Scholar
  10. 10.
    Guangnan, Y., Yitong, L., Hongliang, X., et al.: EventNet: a large scale structured concept library for complex event detection in video. In: Proceedings of ACM Multimedia Conference (ACM MM) (2015)Google Scholar
  11. 11.
    Zhou, B., Lapedriza, A., Xiao, J., et al.: Learning deep features for scene recognition using places database. In: Proceedings of NIPS, pp. 487–495 (2014)Google Scholar
  12. 12.
    Markatopoulou, F., Galanopoulos, D., Mezaris, V., Patras, I.: Query and keyframe representations for ad-hoc video search. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 407–411. ACM (2017)Google Scholar
  13. 13.
    Galanopoulos, D., Markatopoulou, F., Mezaris, V., Patras, I.: Concept language models and event-based concept number selection for zero-example event detection. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 397–401. ACM (2017)Google Scholar
  14. 14.
    Albitar, S., Fournier, S., Espinasse, B.: The impact of conceptualization on text classification. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 326–339. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35063-4_24CrossRefGoogle Scholar
  15. 15.
    Gialampoukidis, I., Moumtzidou, A., Liparas, D., Vrochidis, S., Kompatsiaris, I.: A hybrid graph-based and non-linear late fusion approach for multimedia retrieval. In: 2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6, June 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stelios Andreadis
    • 1
  • Anastasia Moumtzidou
    • 1
  • Damianos Galanopoulos
    • 1
  • Foteini Markatopoulou
    • 1
  • Konstantinos Apostolidis
    • 1
  • Thanassis Mavropoulos
    • 1
  • Ilias Gialampoukidis
    • 1
  • Stefanos Vrochidis
    • 1
  • Vasileios Mezaris
    • 1
  • Ioannis Kompatsiaris
    • 1
  • Ioannis Patras
    • 2
  1. 1.Information Technologies Institute/Centre for Research and Technology HellasThessalonikiGreece
  2. 2.School of Electronic Engineering and Computer ScienceQMULLondonUK

Personalised recommendations