Advertisement

Training Researchers with the MOVING Platform

  • Iacopo VaglianoEmail author
  • Angela Fessl
  • Franziska Günther
  • Thomas Köhler
  • Vasileios Mezaris
  • Ahmed Saleh
  • Ansgar Scherp
  • Ilija Šimić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)

Abstract

The MOVING platform enables its users to improve their information literacy by training how to exploit data and text mining methods in their daily research tasks. In this paper, we show how it can support researchers in various tasks, and we introduce its main features, such as text and video retrieval and processing, advanced visualizations, and the technologies to assist the learning process.

Keywords

Technology enhanced learning Information retrieval Text and video analysis Recommender systems 

Notes

Acknowledgments

This work was supported by the EU’s Horizon 2020 programme under grant agreement H2020-693092 MOVING. The Know-Center is funded within the Austrian COMET Program under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry of Economy, Family and Youth and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

References

  1. 1.
    Apaolaza, A., Vigo, M.: WevQuery: testing hypotheses about web interaction patterns. Proc. ACM Hum. Comput. Interact. 1(EICS), 4:1–4:17 (2017)Google Scholar
  2. 2.
    Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014Google Scholar
  3. 3.
    Fessl, A., Wertner, A., Pammer-Schindler, V.: Digging for gold: motivating users to explore alternative search interfaces. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) EC-TEL 2018. LNCS, vol. 11082, pp. 636–639. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98572-5_62CrossRefGoogle Scholar
  4. 4.
    Galanopoulos, D., Markatopoulou, F., Mezaris, V., Patras, I.: Concept language models and event-based concept number selection for zero-example event detection. In: Proceedings of ACM ICMR (2017)Google Scholar
  5. 5.
    Galanopoulos, D., Mezaris, V.: Temporal lecture video fragmentation using word embeddings. In: Kompatsiaris, I., et al. (eds.) MMM 2019. LNCS, vol. 11296, pp. 254–265. Springer International Publishing (2019)Google Scholar
  6. 6.
    Galke, L., Mai, F., Vagliano, I., Scherp, A.: Multi-modal adversarial autoencoders for recommendations of citations and subject labels. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP 2018, pp. 197–205. ACM (2018)Google Scholar
  7. 7.
    Markatopoulou, F., Mezaris, V., Patras, I.: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation. IEEE Trans. Circ. Syst. Video Technol., 1 (2018, in press)Google Scholar
  8. 8.
    Nishioka, C., Scherp, A.: Profiling vs. time vs. content: what does matter for top-k publication recommendation based on twitter profiles? In: Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, JCDL 2016, pp. 171–180. ACM (2016)Google Scholar
  9. 9.
    Vagliano, I., Monti, D., Scherp, A., Morisio, M.: Content recommendation through semantic annotation of user reviews and linked data. In: Proceedings of the Knowledge Capture Conference, K-CAP 2017, pp. 32:1–32:4. ACM (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iacopo Vagliano
    • 1
    Email author
  • Angela Fessl
    • 2
  • Franziska Günther
    • 3
  • Thomas Köhler
    • 3
  • Vasileios Mezaris
    • 4
  • Ahmed Saleh
    • 1
  • Ansgar Scherp
    • 5
  • Ilija Šimić
    • 2
  1. 1.ZBW – Leibniz Information Centre for EconomicsKielGermany
  2. 2.Know CenterGrazAustria
  3. 3.Technische Universität DresdenDresdenGermany
  4. 4.Centre for Research and Technology HellasThessalonikiGreece
  5. 5.University of StirlingStirlingScotland, UK

Personalised recommendations