Advertisement

Using Coarse Label Constraint for Fine-Grained Visual Classification

  • Chaohao Lu
  • Yuexian ZouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)

Abstract

Recognizing fine-grained categories (e.g., dog species) relies on part localization and fine-grained feature learning. However, these classification methods use fine labels and ignore the structural information between different classes. In contrast, we take into account the structural information and use it to improve fine-grained visual classification performance. In this paper, we propose a novel coarse label representation and the corresponding cost function. The new coarse label representation idea comes from the category representation in the multi-label classification. This kind of coarse label representation can well express the structural information embedded in the class hierarchy, and the coarse labels are only obtained from suffix names of different category names, or given in advance like CIFAR100 dataset. A new cost function is proposed to guide the fine label convergence with the constraint of coarse labels, so we can make full use of this kind of coarse label supervised information to improve fine-grained visual classification. Our method can be generalized to any fine-tuning task; it does not increase the size of the original model; and adds no overhead to the training time. We conduct comprehensive experiments and show that using coarse label constraint improves major fine-grained classification datasets.

Keywords

Fine-grained classification Multi-label learning Coarse label constraint 

Notes

Acknowledgment

This paper was partially supported by the Shenzhen Science & Technology Fundamental Research Program (No: JCYJ20160330095814461) & Shenzhen Key Laboratory for Intelligent Multimedia and Virtual Reality (ZDSYS201703031405467).

References

  1. 1.
    Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds 200-2011 Dataset. California Institute of Technology (2011)Google Scholar
  2. 2.
    Horn, G.V., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: Computer Vision and Pattern Recognition, pp. 595–604 (2015)Google Scholar
  3. 3.
    Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.: Novel dataset for fine-grained image categorization (2013)Google Scholar
  4. 4.
    Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Sixth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008, pp. 722–729 (2009)Google Scholar
  5. 5.
    Yang, L., Luo, P., Chen, C.L., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: Computer Vision and Pattern Recognition, pp. 3973–3981 (2015)Google Scholar
  6. 6.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255 (2009)Google Scholar
  7. 7.
    Yin, C., Yang, S., Chen, S., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning (2018)Google Scholar
  8. 8.
    Wei, X.S., Xie, C.W., Wu, J.: Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition (2016)Google Scholar
  9. 9.
    Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: Computer Vision and Pattern Recognition, pp. 1173–1182 (2016)Google Scholar
  10. 10.
    Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for fine-grained image recognition (2018)Google Scholar
  11. 11.
    Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: IEEE International Conference on Computer Vision, pp. 5219–5227 (2017)Google Scholar
  12. 12.
    Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Computer Vision and Pattern Recognition, pp. 4476–4484 (2017)Google Scholar
  13. 13.
    Krause, J., et al.: The unreasonable effectiveness of noisy data for fine-grained recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 301–320. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_19CrossRefGoogle Scholar
  14. 14.
    Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837 (2014)CrossRefGoogle Scholar
  15. 15.
    Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. 47, 1–38 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_54CrossRefGoogle Scholar
  17. 17.
    Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: Computer Vision and Pattern Recognition, pp. 842–850 (2015)Google Scholar
  18. 18.
    Lin, T.Y., Roychowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition, pp. 1449–1457 (2015)Google Scholar
  19. 19.
    Cui, Y., Zhou, F., Wang, J., Liu, X., Lin, Y., Belongie, S.: Kernel pooling for convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3049–3058 (2017)Google Scholar
  20. 20.
    Moghimi, M., Belongie, S., Saberian, M., Yang, J., Vasconcelos, N., Li, L.J.: Boosted convolutional neural networks. In: British Machine Vision Conference, pp. 24.21–24.13 (2016)Google Scholar
  21. 21.
    Horn, G.V., et al.: The iNaturalist species classification and detection dataset (2018)Google Scholar
  22. 22.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016)Google Scholar
  23. 23.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)Google Scholar
  24. 24.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2015)Google Scholar
  25. 25.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision, pp. 2818–2826 (2015)Google Scholar
  26. 26.
    Zagoruyko, S., Komodakis, N.: Wide residual networks (2016)Google Scholar
  27. 27.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  28. 28.
    Lin, M., Chen, Q., Yan, S.: Network in Network. Computer Science (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ADSPLAB, School of ECEPeking UniversityShenzhenChina
  2. 2.Peng Cheng LaboratoryShenzhenChina

Personalised recommendations