Advertisement

A Reliability Object Layer for Deep Hashing-Based Visual Indexing

  • Konstantinos Gkountakos
  • Theodoros Semertzidis
  • Georgios Th. Papadopoulos
  • Petros Daras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11296)

Abstract

Nowadays, time-efficient search and retrieval of visually similar content has emerged as a great necessity, while at the same time it constitutes an outstanding research challenge. The latter is further reinforced by the fact that millions of images and videos are generated on a daily basis. In this context, deep hashing techniques, which aim at estimating a very low dimensional binary vector for characterizing each image, have been introduced for realizing realistically fast visual-based search tasks. In this paper, a novel approach to deep hashing is proposed, which explicitly takes into account information about the object types that are present in the image. For achieving this, a novel layer has been introduced on top of current Neural Network (NN) architectures that aims to generate a reliability mask, based on image semantic segmentation information. Thorough experimental evaluation, using four datasets, proves that incorporating local-level information during the hash code learning phase significantly improves the similar retrieval results, compared to state-of-art approaches.

Keywords

Deep hashing Hash codes Deep learning Image segmentation Neural networks 

References

  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  2. 2.
    Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: Deep learning to hash by continuation. arXiv preprint arXiv:1702.00758 (2017)
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  4. 4.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results (2012). http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
  6. 6.
    Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search inhigh dimensions via hashing. In: VLDB, pp. 518–529 (1999)Google Scholar
  7. 7.
    Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)CrossRefGoogle Scholar
  8. 8.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  10. 10.
    Hong, S., Noh, H., Han, B.: Decoupled deep neural network for semi-supervised semantic segmentation. In: Advances in Neural Information Processing Systems, pp. 1495–1503 (2015)Google Scholar
  11. 11.
    Kong, W., Li, W.J.: Isotropic hashing. In: Advances in Neural Information Processing Systems, pp. 1646–1654 (2012)Google Scholar
  12. 12.
    Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)Google Scholar
  13. 13.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  14. 14.
    Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: Advances in Neural Information Processing Systems, pp. 1042–1050 (2009)Google Scholar
  15. 15.
    Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. arXiv preprint arXiv:1504.03410 (2015)
  16. 16.
    Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855 (2015)
  17. 17.
    Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 27–35. IEEE (2015)Google Scholar
  18. 18.
    Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J., et al.: Deep hashing for compact binary codes learning. In: CVPR, vol. 1, p. 3 (2015)Google Scholar
  19. 19.
    Rastegari, M., Farhadi, A., Forsyth, D.: Attribute discovery via predictable discriminative binary codes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 876–889. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33783-3_63CrossRefGoogle Scholar
  20. 20.
    Semertzidis, T., Rafailidis, D., Strintzis, M.G., Daras, P.: The influence of image descriptors’ dimensions’ value cardinalities on large-scale similarity search. Int. J. Multimedia Inf. Retr. 4(3), 187–204 (2015)CrossRefGoogle Scholar
  21. 21.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  22. 22.
    Wang, X., Shi, Y., Kitani, K.M.: Deep supervised hashing with triplet labels. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 70–84. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54181-5_5CrossRefGoogle Scholar
  23. 23.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in neural information processing systems, pp. 1753–1760 (2009)Google Scholar
  24. 24.
    Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI, vol. 1, p. 2 (2014)Google Scholar
  25. 25.
    Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600 (2017)
  26. 26.
    Yang, H.F., Lin, K., Chen, C.S.: Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 437–451 (2018)CrossRefGoogle Scholar
  27. 27.
    Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for multi-label image retrieval. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1556–1564. IEEE (2015)Google Scholar
  29. 29.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)Google Scholar
  30. 30.
    Zhong, G., Xu, H., Yang, P., Wang, S., Dong, J.: Deep hashing learning networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2236–2243. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantinos Gkountakos
    • 1
  • Theodoros Semertzidis
    • 1
  • Georgios Th. Papadopoulos
    • 1
  • Petros Daras
    • 1
  1. 1.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece

Personalised recommendations