Advertisement

Foveated Ray Tracing for VR Headsets

  • Adam Siekawa
  • Michał Chwesiuk
  • Radosław MantiukEmail author
  • Rafał Piórkowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11295)

Abstract

In this work, we propose a real-time foveated ray tracing system, which mimics the non-uniform and sparse characteristic of the human retina to reduce spatial sampling. Fewer primary rays are traced in the peripheral regions of vision, while sampling frequency for the fovea region traced by the eye tracker is maximised. Our GPU-accelerated ray tracer uses a sampling mask to generate a non-uniformly distributed set of pixels. Then, the regular Cartesian image is reconstructed based on the GPU-accelerated triangulation method with the barycentric interpolation. The temporal anti-aliasing is applied to reduce the flickering artefacts. We perform a user study in which people evaluate the visibility of artefacts in the peripheral region of vision where sampling is reduced. This evaluation is conducted for a number of sampling masks that mimic the sensitivity to contrast in the human eyes but also test different sampling strategies. The sampling that follows the gaze-dependent contrast sensitivity function is reported to generate images of the best quality. We test the performance of the whole system on the VR headset. The achieved frame-rate is twice higher in comparison to the typical Cartesian sampling and cause only barely visible degradation of the image quality.

Notes

Acknowledgments

The project was funded by the Polish National Science Centre (decision number DEC-2013/09/B/ST6/02270).

References

  1. 1.
    Advanced Micro Devices, Inc.: Radeon-rays library, version 2.0 (2016). http://gpuopen.com/gaming-product/radeon-rays/
  2. 2.
    Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A. K. Peters Ltd., Natick (2008)Google Scholar
  3. 3.
    Chwesiuk, M., Mantiuk, R.: Measurements of contrast detection thresholds for peripheral vision using non-flashing stimuli. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 73, pp. 258–267. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-59424-8_24CrossRefGoogle Scholar
  4. 4.
    V Corporation: Openvr library, version 1.0.10 (2017). https://github.com/ValveSoftware/openvr
  5. 5.
    Fujita, M., Harada, T.: Foveated real-time ray tracing for virtual reality headset. Technical report, Light Transport Entertainment Research (2014)Google Scholar
  6. 6.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM (1996)Google Scholar
  7. 7.
    Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. 31(6), 164:1–164:10 (2012)CrossRefGoogle Scholar
  8. 8.
    Hunt, W.: Virtual reality: the next great graphics revolution. Keynote Talk HPG (2015)Google Scholar
  9. 9.
    Levoy, M., Whitaker, R.: Gaze-directed volume rendering. ACM SIGGRAPH Comput. Graph. 24(2), 217–223 (1990)CrossRefGoogle Scholar
  10. 10.
    Loschky, L., McConkie, G., Yang, J., Miller, M.: The limits of visual resolution in natural scene viewing. Vis. Cogn. 12(6), 1057–1092 (2005)CrossRefGoogle Scholar
  11. 11.
    Mantiuk, R., Bazyluk, B., Mantiuk, R.K.: Gaze-driven object tracking for real time rendering. Comput. Graph. Forum 32(2), 163–173 (2013)CrossRefGoogle Scholar
  12. 12.
    Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: Comparison of four subjective methods for image quality assessment. Comput. Graph. Forum 31(8), 2478–2491 (2012)CrossRefGoogle Scholar
  13. 13.
    Murphy, H.A., Duchowski, A.T., Tyrrell, R.A.: Hybrid image/model-based gaze-contingent rendering. ACM Trans. Appl. Percept. (TAP) 5(4), 22 (2009)Google Scholar
  14. 14.
    Ohshima, T., Yamamoto, H., Tamura, H.: Gaze-directed adaptive rendering for interacting with virtual space. In: 1996 Proceedings of the IEEE Conference on Virtual Reality Annual International Symposium, pp. 103–110. IEEE (1996)Google Scholar
  15. 15.
    Palmer, S.E.: Vision Science: Photons to Phenomenology, vol. 1. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Patney, A., et al.: Perceptually-based foveated virtual reality. In: ACM SIGGRAPH 2016 Emerging Technologies, p. 17. ACM (2016)Google Scholar
  17. 17.
    Peli, E., Yang, J., Goldstein, R.B.: Image invariance with changes in size: the role of peripheral contrast thresholds. JOSA A 8(11), 1762–1774 (1991)CrossRefGoogle Scholar
  18. 18.
    Roth, T., Weier, M., Hinkenjann, A., Li, Y., Slusallek, P.: An analysis of eye-tracking data in foveated ray tracing. In: IEEE Second Workshop on Eye Tracking and Visualization (ETVIS), pp. 69–73. IEEE (2016)Google Scholar
  19. 19.
    Siekawa, A.: Gaze-dependent ray tracing. In: Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (Non-peer-reviewed) (2014)Google Scholar
  20. 20.
    Siekawa, A.: Image reconstruction from spatially non-uniform samples. In: Proceedings of CESCG 2017: The 21th Central European Seminar on Computer Graphics (Non-peer-reviewed) (2017)Google Scholar
  21. 21.
    Stengel, M., Magnor, M.: Gaze-contingent computational displays: boosting perceptual fidelity. IEEE Sig. Process. Mag. 33(5), 139–148 (2016)CrossRefGoogle Scholar
  22. 22.
    Vaidyanathan, K., et al.: Coarse pixel shading. In: Proceedings of High Performance Graphics, pp. 9–18. Eurographics Association (2014)Google Scholar
  23. 23.
    Wandell, B.A.: Foundations of Vision, vol. 8. Sinauer Associates, Sunderland (1995)Google Scholar
  24. 24.
    Watson, B., Walker, N., Hodges, L.F., Worden, A.: Managing level of detail through peripheral degradation: effects on search performance with a head-mounted display. ACM Trans. Comput.-Hum. Interact. (TOCHI) 4(4), 323–346 (1997)CrossRefGoogle Scholar
  25. 25.
    Weier, M., et al.: Perception-driven accelerated rendering. Comput. Graph. Forum 36(2), 611–643 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adam Siekawa
    • 1
  • Michał Chwesiuk
    • 1
  • Radosław Mantiuk
    • 1
    Email author
  • Rafał Piórkowski
    • 1
  1. 1.West Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations