Improving Robustness of Image Tampering Detection for Compression
- 1.4k Downloads
Abstract
The task of verifying the originality and authenticity of images puts numerous constraints on tampering detection algorithms. Since most images are acquired on the internet, there is a significant probability that they have undergone transformations such as compression, noising, resizing and/or filtering, both before and after the possible alteration. Therefore, it is essential to improve the robustness of tampered image detection algorithms for such manipulations. As compression is the most common type of post-processing, we propose in our work a robust framework against this particular transformation. Our experiments on benchmark datasets show the contribution of our proposal for camera model identification and image tampering detection compared to recent literature approaches.
Keywords
Image forensics Lossy compression Camera model identification Convolutional neural networksReferences
- 1.Amerini, I., Uricchio, T., Ballan, L., Caldelli, R.: Localization of jpeg double compression through multi-domain convolutional neural networks. In: Proceedings of IEEE CVPR Workshop on Media Forensics, vol. 3 (2017)Google Scholar
- 2.Barni, M., et al.: Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)CrossRefGoogle Scholar
- 3.Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)Google Scholar
- 4.Bayar, B., Stamm, M.C.: Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017(7), 77–86 (2017)CrossRefGoogle Scholar
- 5.Bayar, B., Stamm, M.C.: Towards open set camera model identification using a deep learning framework. In: The 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2018)Google Scholar
- 6.Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefGoogle Scholar
- 7.Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Sig. Process. Lett. 24(3), 259–263 (2017)CrossRefGoogle Scholar
- 8.Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: Tampering detection and localization through clustering of camera-based CNN features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1855–1864 (2017)Google Scholar
- 9.Bunk, J., et al.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE (2017)Google Scholar
- 10.Cao, H., Kot, A.C.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans. Inf. Forensics Secur. 4(4), 899–910 (2009)CrossRefGoogle Scholar
- 11.Chen, C., Zhao, X., Stamm, M.C.: Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1512–1516. IEEE (2017)Google Scholar
- 12.Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)Google Scholar
- 13.Gloe, T., Böhme, R.: The ‘Dresden image Database’ for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. ACM (2010)Google Scholar
- 14.He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
- 15.Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. arXiv preprint arXiv:1805.04096 (2018)
- 16.Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Trans. Inf. Forensics Secur. 6(3–2), 1066–1075 (2011)CrossRefGoogle Scholar
- 17.Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712. IEEE (2004)Google Scholar
- 18.Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)CrossRefGoogle Scholar
- 19.Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
- 20.LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
- 21.LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRefGoogle Scholar
- 22.Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Evaluation of residual-based local features for camera model identification. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 11–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_2CrossRefGoogle Scholar
- 23.Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: A study of co-occurrence based local features for camera model identification. Multimedia Tools Appl. 76(4), 4765–4781 (2017)CrossRefGoogle Scholar
- 24.Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics: a large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179 (2018)
- 25.Stamm, M.C., Wu, M., Liu, K.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)CrossRefGoogle Scholar
- 26.Swaminathan, A., Wu, M., Liu, K.R.: Nonintrusive component forensics of visual sensors using output images. IEEE Trans. Inf. Forensics Secur. 2(1), 91–106 (2007)CrossRefGoogle Scholar
- 27.Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
- 28.Thai, T.H., Cogranne, R., Retraint, F.: Camera model identification based on the heteroscedastic noise model. IEEE Trans. Image Process. 23(1), 250–263 (2014)MathSciNetCrossRefGoogle Scholar
- 29.Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)Google Scholar
- 30.Wen, L., Qi, H., Lyu, S.: Contrast enhancement estimation for digital image forensics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(2), 49 (2018)Google Scholar
- 31.Xu, G., Shi, Y.Q.: Camera model identification using local binary patterns. In: 2012 IEEE International Conference on Multimedia and Expo (ICME), pp. 392–397. IEEE (2012)Google Scholar