Advertisement

Entropy Production in Turbulence Parameterizations

  • Almut GassmannEmail author
  • Richard Blender
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 1)

Abstract

The atmosphere is a forced-dissipative system. It has to export more entropy than it imports in a steady state. Therefore, the entropy inflow and outflow have to be distinguished from the internal entropy production, which has to be positive in the mean on long timescales. This principle does not only hold for the whole atmosphere, but also for subsystems like individual grid boxes in a numerical model. However, the constraint of positive internal entropy production was not taken into account when developing contemporary subgrid-scale parameterization schemes for atmospheric models. Some of these schemes suit automatically into this framework; some do not. This article discusses the current understanding and scientific discussion of this topic and illustrates possible future development paths.

References

  1. Akmaev, R.A.: On the energetics of maximum-entropy temperature profiles. Q. J. R. Meteorol. Soc. 134, 187–197 (2008)CrossRefGoogle Scholar
  2. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119–143 (1966)CrossRefGoogle Scholar
  3. Arakawa, A., Lamb, V.R.: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev. 109, 18–36 (1981)CrossRefGoogle Scholar
  4. de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover (1984)Google Scholar
  5. Dewar, R.C.: Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 38, 371 (2005)MathSciNetCrossRefGoogle Scholar
  6. Egger, J.: Numerical generation of entropies. Mon. Wea. Rev. 127, 2211–2216 (1999)CrossRefGoogle Scholar
  7. Evans, D.J., Cohen, E.D.G., Morriss, G.P.: Probabilty of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993)CrossRefGoogle Scholar
  8. Evans, D.J., Searles, D.: The fluctuation theorem. Adv. Phys. 51, 1529 (2002)CrossRefGoogle Scholar
  9. Gallavotti, G.: A local fluctuation theorem. Phys. A 263, 39–50 (1999)MathSciNetCrossRefGoogle Scholar
  10. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)CrossRefGoogle Scholar
  11. Gallavotti, G., Lucarini, V.: Equivalence of non-equilibrium ensembles and representation of friction in turbulent flows: the lorenz 96 model. J. Stat. Phys. 156, 1027–1065 (2014)MathSciNetCrossRefGoogle Scholar
  12. Gassmann, A.: Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations. J. Comput. Phys. 230, 2706–2721 (2011)MathSciNetCrossRefGoogle Scholar
  13. Gassmann, A.: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency. Q. J. R. Meteorol. Soc. 139, 152–175 (2013)CrossRefGoogle Scholar
  14. Gassmann, A.: Entropy production due to subgrid-scale thermal fluxes in breaking gravity waves. J. Atmos. Sci., subm.:0–0 (2016)Google Scholar
  15. Gassmann, A., Herzog, H.-J.: How is local material entropy production represented in a numerical model? Q. J. R. Meteorol. Soc. 141, 854–869 (2015)CrossRefGoogle Scholar
  16. Goody, R.: Sources and sinks of climate entropy. Q. J. R. Meteorol. Soc. 126, 1953–1970 (2000)CrossRefGoogle Scholar
  17. Hermanson, L., Hoskins, B., Palmer, T.: A comparative method to evaluate and validate stochastic parametrizations. Q. J. R. Meteorol. Soc. 135, 1095–1103 (2009)CrossRefGoogle Scholar
  18. Hollingsworth, A., Kållberg, P., Renner, V., Burridge, D.M.: An internal symmetric computational instability. Q. J. R. Meteorol. Soc. 109, 417–428 (1983)CrossRefGoogle Scholar
  19. Liu, H.-L., Meriwether, J.W.: Analysis of a temperature inversion event in the lower mesosphere. J. Geophys. Res. 109, D02S07 (2004)Google Scholar
  20. Lorenz, E. N. (1967). The nature and theory of the general circulation of the atmosphere. Technical Report, WMO—No. 218. TP. 115Google Scholar
  21. Lucarini, V.: Stochastic perturbations to dynamical systems: a response theory approach. J. Stat. Phys. 146, 774–786 (2012)MathSciNetCrossRefGoogle Scholar
  22. Lucarini, V., Blender, R., Herbert, C., Ragone, F., Pascale, S., Wouters, J.: Mathematical and physical ideas for climate science. Rev. Geophys. 52, 809–859 (2014)CrossRefGoogle Scholar
  23. Lucarini, V., Colangeli, M.: Beyond the linear fluctuation-dissipation theorem: the role of causality. J. Stat. Mech. Theor. Exp. 2012, P05013 (2012)CrossRefGoogle Scholar
  24. Lucarini, V., Sarno, S.: A statistical mechanical approach for the computation of the climatic response to general forcings. Nonlinear Process. Geophys. 18, 7–28 (2011)CrossRefGoogle Scholar
  25. Michel, G., Searles, D.J.: Local fluctuation theorem for large systems. Phys. Rev. Lett. 110, 260602 (2013)CrossRefGoogle Scholar
  26. Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., Ott, E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86, 5878 (2001)CrossRefGoogle Scholar
  27. Pauluis, O., Held, I.M.: Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59, 125–139 (2002a)CrossRefGoogle Scholar
  28. Pauluis, O., Held, I.M.: Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: Latent heat hransport and moist processes. J. Atmos. Sci. 59, 140–149 (2002b)CrossRefGoogle Scholar
  29. Phillips, N.A.: An example of non-linear computational instability. In: The Atmosphere and the Sea in Motion, pp. 501–504. Rockefeller Institute Press, New York (1959)Google Scholar
  30. Priestley, C.H.B., Swinbank, W.C.: Vertical transport of heat by turbulence in the atmosphere. Proc. R. Soc. Lond. A 189, 543–561 (1947)CrossRefGoogle Scholar
  31. Raymond, D.J.: Sources and sinks of entropy in the atmosphere. JAMES 5, 755–763 (2013)Google Scholar
  32. Romps, D.M.: The dry entropy budget of a moist atmosphere. J. Atmos. Sci. 65, 3779–3799 (2008)CrossRefGoogle Scholar
  33. Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855 (2009)MathSciNetCrossRefGoogle Scholar
  34. Schalge, B., Blender, R., Wouters, J., Fraedrich, K., Lunkeit, F.: Evidence for a fluctuation theorem in an atmospheric circulation model. Phys. Rev. E 87, 052113 (2013)CrossRefGoogle Scholar
  35. Seiffert, R., Blender, R., Fraedrich, K.: Subscale forcing in a global atmospheric circulation model and stochastic parametrization. Q. J. R. Meteorol. Soc. 132, 1627–1643 (2006)CrossRefGoogle Scholar
  36. Sevick, E.M., Prabhakar, R., Williams, S.R., Saerles, D.J.: Fluctuation theorems. Annu. Rev. Phys. Chem. 59, 603 (2008)CrossRefGoogle Scholar
  37. Shang, X.-D., Tong, P., Xia, K.-Q.: Test of steady-state fluctuation theorem in turbulent rayleigh-bénard convection. Phys. Rev. E 72, 015301 (2005)CrossRefGoogle Scholar
  38. Smagorinsky, J.: Some historical remarks on the use of nonlinear viscosities. In: Large Eddy Simulation of Complex Engineering and Geophysical Flows, pp. 3–36. Cambridge University Press (1993)Google Scholar
  39. Verkley, W.T.M., Gerkema, T.: On maximum entropy profiles. J. Atmos. Sci. 61, 931–936 (2004)MathSciNetCrossRefGoogle Scholar
  40. Wan, H., Giorgetta, M.A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids, Part I: formulation and performance of the baseline version. Geosci. Model. Dev. 6, 663–693 (2013)Google Scholar
  41. Woolings, T., Thuburn, J.: Entropy sources in a dynamical core atmosphere model. Q. J. R. Meteorol. Soc. 132, 43–59 (2006)CrossRefGoogle Scholar
  42. Wouters, J., Lucarini, V.: Disentangling multi-level systems: averaging, correlations and memory. J. Stat. Mech. Theor. Exp. 2012, P03003 (2012)CrossRefGoogle Scholar
  43. Wouters, J., Lucarini, V.: Multi-level dynamical systems: connecting the ruelle response theory and the Mori-Zwanzig approach. J. Stat. Phys. 151, 850–860 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leibniz-Institut für Atmosphärenphysik e.V.Universität RostockRostockGermany
  2. 2.Center for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany

Personalised recommendations