Advertisement

Observations and Models of Low-Mode Internal Waves in the Ocean

  • Christian MertensEmail author
  • Janna Köhler
  • Maren Walter
  • Jin-Song von Storch
  • Monika Rhein
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 1)

Abstract

The generation of internal gravity waves in the ocean is largely driven by tides, winds, and interaction of currents with the seafloor. Models and observations indicate a global energy supply for the internal wave field of about 1 TW by the conversion of barotropic tides at mid-ocean ridges and abrupt topographic features. Winds acting on the oceanic mixed layer contribute 0.3–1.5 TW, and mesoscale flow over rough topography adds about 0.2 TW. Globally, 1–2 TW are needed to maintain the observed stratification of the deep ocean by diapycnal mixing that results from the breaking of internal waves. Ocean circulation models show significant impact of the spatial distribution of internal wave dissipation and mixing on the ocean state, e.g., thermal structure, stratification, and meridional overturning circulation. Observations indicate that the local ratio of generation and dissipation of internal waves is often below unity, and thus, the energy available for mixing must be redistributed by internal tides and near-inertial waves at low vertical wavenumber that can propagate thousands of kilometers from their source regions. Eddy-permitting global ocean circulation models are able to quantify the different sources of energy input and can also simulate the propagation of the lowest internal wave modes. However, the variation of the internal wave energy flux along its paths by wave–wave interaction, topographic scattering, and refraction by mesoscale features as well as its ultimate fate by dissipation remains to be parameterized.

Notes

Acknowledgements

We thank Brian Dushaw (Univ. Washington) for providing estimates of mode 1 internal tides from altimetry and Carsten Eden (Univ. Hamburg) for the energy fluxes from IDEMIX. Janna Köhler received funding from the Deutsche Forschungsgemeinschaft (DFG, grant Ko4814/1-1).

References

  1. Alford, M.H.: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 30(8), 1424 (2003a)CrossRefGoogle Scholar
  2. Alford, M.H.: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423, 159–162 (2003b)CrossRefGoogle Scholar
  3. Alford, M.H., Zhao, Z.: Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J. Phys. Oceanogr. 37, 1829–1848 (2007)MathSciNetCrossRefGoogle Scholar
  4. Alford, M.H., MacKinnon, J.A., Nash, J.D., Simmons, H., Pickering, A., Klymak, J.M., Pinkel, R., Sun, O., Rainville, L., Mushgrave, R., Beitzel, T., Fu, K.-H., Lu, C.-W.: Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr. 41, 2211–2222 (2011)CrossRefGoogle Scholar
  5. Alford, M.H., Cronin, M.F., Klymak, J.M.: Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station Papa in the Northeast Pacific. J. Phys. Oceanogr. 42, 889–909 (2012)CrossRefGoogle Scholar
  6. Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centuroni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., Fu, K.-H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.-H., Lien, R.-C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.-H., Pickering, A.L., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St. Laurent, L. C., Venayagamoorthy, S. K., Wang, Y.-H., Wang, J., Yang, Y. J., Paluszkiewicz, T., Tang, T.-Y.: The formation and fate of internal waves in the South China Sea. Nature 521, 65–69 (2015)Google Scholar
  7. Arbic, B.K., Wallcraft, A.J., Metzger, E.J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Model. 32, 175–187 (2010)CrossRefGoogle Scholar
  8. Arbic, B.A., Scott, R.B., Chelton, D.B., Richman, J.G., Shriver, J.F.: Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data. J. Geophys. Res. 117, C03029 (2012)CrossRefGoogle Scholar
  9. Bell, T.: Statistical features of sea-floor topography. Deep-Sea Res. 22, 883–892 (1975a)Google Scholar
  10. Bell, T.: Topographically generated internal waves in the open ocean. J. Geophys. Res. 80(3), 320–327 (1975b)CrossRefGoogle Scholar
  11. Damerell, G.M., Heywood, K.J., Stevens, D.P., Naveira Garabato, A.C.: Temporal variability of diapycnal mixing in Shag Rocks Passage. J. Phys. Oceanogr. 42, 370–385 (2012)CrossRefGoogle Scholar
  12. D’Asaro, E.A., Eriksen, C.C., Levine, M.D., Niiler, P., Paulson, C.A., Meurs, P.V.: Upper-ocean inertial currents forced by a strong storm. Part I: data and comparision with linear theory. J. Phys. Oceanogr. 25, 2909–2936 (1995)CrossRefGoogle Scholar
  13. Dushaw, B.: An empirical model for mode-1 internal tides derived from satellite altimetry: computing accurate tidal predictions at arbitrary points over the world oceans. Technical. Memorandum 1–15, APL-UW (2015)Google Scholar
  14. Dushaw, B.D., Worcester, P.F., Dzieciuch, M.A.: On the predictability of mode-1 internal tides. Deep-Sea Res. I(58), 677–698 (2011)CrossRefGoogle Scholar
  15. Eden, C., Czeschel, L., Olbers, D.: Toward energetically consistend ocean models. J. Phys. Oceanogr. 44, 3160–3184 (2014)CrossRefGoogle Scholar
  16. Eden, C., Olbers, D.: An energy compartment model for propagation, non-linear interaction and dissipation of internal gravity waves. J. Phys. Oceanogr. 44, 2093–2106 (2014)CrossRefGoogle Scholar
  17. Egbert, G., Erofeeva, S.: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002)CrossRefGoogle Scholar
  18. Egbert, G.D., Ray, R.D.: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775–778 (2000)CrossRefGoogle Scholar
  19. Exarchou, E., von Storch, J.-S., Jungclaus, J.H.: Impact of tidal mixing with different scales of bottom roughness on the general circulation. Ocean Dyn. 62, 1545–1563 (2012)CrossRefGoogle Scholar
  20. Exarchou, E., von Storch, J.-S., Jungclaus, J.H.: Sensitivity of transient climate change to tidal mixing: southern ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Clim. Dyn. 42, 1755–1773 (2014)CrossRefGoogle Scholar
  21. Frants, M., Damerell, G.M., Gille, S.T., Heywood, K.J., MacKinnon, J., Sprintall, J.: An assessment of density-based finescale methods for estimating diapycnal diffusivity in the Southern Ocean. J. Atmos. Ocean. Technol. 30, 2647–2661 (2013)CrossRefGoogle Scholar
  22. Furuichi, N., Hibiya, T., Niwa, Y.: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res. 113, C09034 (2008)CrossRefGoogle Scholar
  23. Gregg, M.C.: Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94(C7), 9686–9698 (1989)CrossRefGoogle Scholar
  24. Gregg, M.C., Sanford, T.B., Winkel, D.P.: Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422, 513–515 (2003)CrossRefGoogle Scholar
  25. Gustafsson, K.E.: Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides. Deep-Sea Res. I(48), 2283–2295 (2001)CrossRefGoogle Scholar
  26. Hallberg, R.: Stable split time stepping schemes for large-scale ocean modeling. J. Comput. Sci. 135, 54–65 (1997)zbMATHGoogle Scholar
  27. Hibiya, T., Nagasawa, M.: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett. 31(L01301) (2004).  https://doi.org/10.1029/2003GL017998
  28. Jiang, J., Lu, Y., Perrie, W.: Estimating the energy flux from the wind to ocean inertial motions: the sensitivity to surface wind fields. Geophys. Res. Lett. 32, L15610 (2005)CrossRefGoogle Scholar
  29. Johnston, T.M.S., Merrifield, M.A., Holloway, P.E.: Internal tide scattering at the line islands ridge. J. Geophys. Res. 108(C11), 3365 (2003)CrossRefGoogle Scholar
  30. Kang, D., Fringer, O.: Energetics of barotropic and baroclinic tides in the monterey bay area. J. Phys. Oceanogr. 42, 272–290 (2012)CrossRefGoogle Scholar
  31. Kelly, S.M., Nash, J.D., Martini, K.I., Alford, M.H., Kunze, E.: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr. 42, 1217–1232 (2012)CrossRefGoogle Scholar
  32. Kelly, S.M., Jones, N.L., Nash, J.D., Waterhouse, A.F.: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett. 40, 4689–4693 (2013)CrossRefGoogle Scholar
  33. Klymak, J.M., Pinkel, R., Rainville, L.: Direct breaking of the internal tide near topography: Kaena Ridge. Hawaii. J. Phys. Oceanogr. 38, 380–399 (2008)CrossRefGoogle Scholar
  34. Kunze, E., Firing, E., Hummon, J.M., Chereskin, T.K., Thurnherr, A.M.: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr. 36(8), 1553–1576 (2006)CrossRefGoogle Scholar
  35. Li, Z., von Storch, J.-S., Müller, M.: The M\(_2\) internal tide simulated by a 1/10\(\,^{\circ }\) OGCM. J. Phys. Oceanogr. 45, 3119–3135 (2015)CrossRefGoogle Scholar
  36. Llewellyn Smith, S.G., Young, W.R.: Conversion of the barotropic tide. J. Phys. Oceanogr. 32(5), 1554–1566 (2002)MathSciNetCrossRefGoogle Scholar
  37. Lvov, Y.V., Polzin, K.L., Tabak, E.G., Yokoyama, N.: Oceanic internal-wave field: theory of scale-invariant spectra. J. Phys. Oceanogr. 40, 2605–2623 (2010)CrossRefGoogle Scholar
  38. MacKinnon, J., St. Laurent, L., Naveira Garabato, A.C.: Diapycnal mixing proceses in the ocean interior. Int. Geophys. 103, 159–183 (chapter 7). Elsevier Ltd (2013)Google Scholar
  39. Mater, B.D., Venayagamoorthy, S.K., St. Laurent, L., Moum, J.N.: Biases in Thorpe-scale estimates of turbulent dissipation. Part I: assesments from large-scale overturns in oceanographic data. J. Phys. Oceanogr. 45, 2497–2521 (2015)CrossRefGoogle Scholar
  40. McComas, C.H.: Equilibrium mechanics within the oceanic internal wave field. J. Phys. Oceanogr. 7, 836–845 (1977)CrossRefGoogle Scholar
  41. McComas, C.H., Bretherton, F.P.: Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 1397–1412 (1977)CrossRefGoogle Scholar
  42. Melet, A., Hallberg, R., Legg, S., Polzin, K.: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr. 43, 602–615 (2013)CrossRefGoogle Scholar
  43. Melet, A., Hallberg, R., Legg, S., Nikurashin, M.: Sensitivity of the ocean state to lee wave-driven mixing. J. Phys. Oceanogr. 44, 900–921 (2014)CrossRefGoogle Scholar
  44. Mellor, G.L.: User Guide for a Three-Dimensional, Primitive Equation. Numerical Ocean Model. Princeton University, Princeton, N.J (2003)Google Scholar
  45. Müller, M.: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Model. 72, 242–252 (2013)CrossRefGoogle Scholar
  46. Müller, M., Cherniawsky, J.Y., Foreman, M.G.G., von Storch, J.-S.: Global M\(_2\) internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett. 39, L19607 (2012)Google Scholar
  47. Munk, W., Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I(45), 1977–2010 (1998)CrossRefGoogle Scholar
  48. Nash, J.D., Alford, M.H., Kunze, E.: Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol. 22, 1551–1570 (2005)CrossRefGoogle Scholar
  49. Nikurashin, M., Ferrari, R.: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 38, L08610 (2011)CrossRefGoogle Scholar
  50. Nikurashin, M., Ferrari, R.: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 3133–3137 (2013)CrossRefGoogle Scholar
  51. Nycander, J.: Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110, C10028 (2005)CrossRefGoogle Scholar
  52. Olbers, D., Eden, C.: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr. 43, 1759–1779 (2013)CrossRefGoogle Scholar
  53. Olbers, D.J.: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech. 74, 375–399 (1976)CrossRefGoogle Scholar
  54. Pinkel, R., Rudnick, D.: Editorial: Hawaii ocean mixing experiment (HOME). J. Phys. Oceanogr. 36, 965–966 (2006)CrossRefGoogle Scholar
  55. Plueddemann, A.J., Farrar, J.T.: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. I(53), 5–30 (2006)Google Scholar
  56. Pollard, R.T., Millard Jr., R.C.: Comparision between observed and simulated wind-generated intertial oscillations. Deep-Sea Res. 17, 813–821 (1970)Google Scholar
  57. Polzin, K.L., Lvov, Y.V.: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49, RG4003 (2011)Google Scholar
  58. Polzin, K.L., Naveira Garabato, A.C., Huussen, T.N., Sloyan, B.M., Waterman, S.: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. 119, 1383–1419 (2014)CrossRefGoogle Scholar
  59. Ray, R.D., Zaron, E.D.: M\(_2\) internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr. 46, 3–22 (2016)CrossRefGoogle Scholar
  60. Rimac, A., von Storch, J.-S., Eden, C., Haak, H.: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett. 40, 4882–4886 (2013)CrossRefGoogle Scholar
  61. Rimac, A., von Storch, J.-S., Eden, C.: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr. 46, 1885–1900 (2016)CrossRefGoogle Scholar
  62. Simmons, H.L., Alford, M.H.: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 25, 30–41 (2012)CrossRefGoogle Scholar
  63. Simmons, H.L., Hallberg, R.W., Arbic, B.K.: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II(51), 3043–3068 (2004)Google Scholar
  64. Sjöberg, B., Stigebrandt, A.: Computation of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res. I(39), 269–291 (1992)CrossRefGoogle Scholar
  65. St. Laurent, L.C., Simmons, H.L., Jayne, S.R.: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 23(2106) (2002).  https://doi.org/10.1029/2002GL015633CrossRefGoogle Scholar
  66. Thorpe, S.A.: Turbulence and mixing in a scottish loch. Phil. Trans. R. Soc. Lond. 286(1334), 125–181 (1977)CrossRefGoogle Scholar
  67. Tian, J., Zhou, L., Zhang, X.: Latitudinal distribution of mixing rate caused by the m\(_2\) internal tide. J. Phys. Oceanogr. 36, 35–42 (2006)CrossRefGoogle Scholar
  68. Walter, M., Mertens, C.: Mid-depth mixing linked to North Atlantic current variability. Geophys. Res. Lett. 40, 4869–4875 (2013)CrossRefGoogle Scholar
  69. Walter, M., Mertens, C., Rhein, M.: Mixing estimates from a large-scale hydrographic survey in the North Atlantic. Geophys. Res. Lett. 32, L13605 (2005)CrossRefGoogle Scholar
  70. Watanabe, M., Hibiya, T.: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett. 29(8), 1239 (2002)CrossRefGoogle Scholar
  71. Waterhouse, A.F., MacKinnon, J.A., Nash, J.D., Alford, M.H., Kunze, E., Simmons, H.L., Polzin, K.L., St. Laurent, L., Sun, O.M., Pinkel, R., Talley, L.D., Whalen, C.B., Huussen, T.N., Carter, G.S., Fer, I., Waterman, S., Naveira Garabato, A.C., Sanford, T.B., Lee, C.M.: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44, 1854–1872 (2014)CrossRefGoogle Scholar
  72. Waterman, S., Naveira Garabato, A.C., Polzin, K.L.: Internal waves and turbulence in the Antarctic circumpolar current. J. Phys. Oceanogr. 43, 259–282 (2013)CrossRefGoogle Scholar
  73. Whalen, C.B., Talley, L.D., MacKinnon, J.A.: Spatial and temporal variability of global ocean mixing inferred from argo profiles. Geophys. Res. Lett. 39, L18612 (2012)CrossRefGoogle Scholar
  74. Wunsch, C.: Internal tides in the ocean. Rev. Geophys. Space Phys. 13, 167–1982 (1975)CrossRefGoogle Scholar
  75. Wunsch, C., Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004)MathSciNetCrossRefGoogle Scholar
  76. Zhao, Z., Alford, M.H.: New altimetric estimates of mode-1 M\(_2\) internal tides in the central north Pacific Ocean. J. Phys. Oceanogr. 39, 1669–1684 (2009)CrossRefGoogle Scholar
  77. Zhao, Z., Alford, M.H., MacKinnon, J.A., Pinkel, R.: Long-range propagation of the semidiurnal tide from the Hawaiian Ridge. J. Phys. Oceanogr. 40, 713–736 (2010)CrossRefGoogle Scholar
  78. Zhao, Z., Alford, M.H., Girton, J., Johnston, T.M.S., Carter, G.: Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res. 116, C12039 (2011)CrossRefGoogle Scholar
  79. Zhao, Z., Alford, M.H., Girton, J.B., Rainville, L., Simmons, H.L.: Global observations of open-ocean mode-1 M\(_2\) internal tides. J. Phys. Oceanogr. 46, 1657–1684 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Mertens
    • 1
    Email author
  • Janna Köhler
    • 1
  • Maren Walter
    • 1
  • Jin-Song von Storch
    • 2
  • Monika Rhein
    • 1
  1. 1.MARUM/Institut für UmweltphysikUniversität BremenBremenGermany
  2. 2.Max-Planck-Institut für Meteorologie (MPI-M)HamburgGermany

Personalised recommendations