Convergence of Fourier-Walsh Double Series in Weighted \(L_{\mu }^{p}[0,1)^{2}\)

  • Martin G. GrigoryanEmail author
  • Tigran M. Grigoryan
  • L. S. Simonyan
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 275)


In this work we discuss the behavior of Fourier coefficients with respect to the Walsh double system, as well as \(L_{\mu }^{p}[0,1)^{2}\)-convergence of the spherical partial sums of the double Fourier-Walsh series after modification of functions.


Fourier series Fourier-Walsh double series Lebesgue spaces 


  1. 1.
    Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D’yachenko, M.I.: Some problems in the theory of multiple trigonometric series. Uspekhi Mat. Nauk 47(5) (16992), 97–162 (1992) (English transl. In Russian Math. Surveys 47)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fefferman, C.: On the divergence of multiple Fourier series. Bull Am. Math. Soc. 77(2), 191–195 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fefferman, C.: The multiple problem for the ball. Ann. Math. 94(2), 330–336 (1971)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Galoyan, L.N., Grigoryan, M.G., Kobelyan, AKh: Convergence of Fourier series in classical systems. Mat. Sb. 206(7), 55–94 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Getsadze, R.D.: On divergence in measure of general multiple orthogonal Furier series. Dokl. Akad. Nauk SSSR 306, 24–25 (1989) (English transl. in Soviet Math. Dokl. 39 1989)Google Scholar
  7. 7.
    Golubov, B.I., Efimov, A.F., Skvortsov, V.A.: Series and Transformations of Walsh. Moskow (1987) (in Russian)Google Scholar
  8. 8.
    Golubov, B.I.: Multiple Furier series and integrals. Itogi Nauki i Tekhniki Ser. Mat. Anal. 47(5), 97–162 (1992) (English transl. in J. Soviet Math. 24 1984)Google Scholar
  9. 9.
    Grigorian, M.G.: On the convergence of Fourier series in the metric of L. Anal. Math. 17, 211–237 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grigorian, M.G.: On the \(L^{p}\)-strong property of orthonormal systems. Math. sb. 194(10), 77–106 (2012) (in Russ., English transl. Sbornik: Math. 194(10), 1503–1532)Google Scholar
  11. 11.
    Grigorian, M.G., Sargsyan, A.A.: On the coefficients of expansion of elements from C[0,1] space by the Faber-Schauder system. J. Funct. Spaces Appl. 2, 34–42 (2011)MathSciNetGoogle Scholar
  12. 12.
    Grigorian, M.G., Zink, R.E.: Greedy approximation with respect to certain subsystems of the Walsh orthonormal system. Proc. Am. Math. Soc. 134(12), 3495–3505 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grigoryan, M.G.: Modifications of functions, Fourier coefficients and nonlinear approximation. Mat. Sb. 203(3), 49–78 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grigoryan, M.G.: Uniform convergence of the greedy algorithm with respect to the Walsh system. Studia Math. 198(2), 197–206 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grigoryan, M.G., Gogyan, S.L.: On nonlinear approximation with respect to the Haar system and modifications of functions. An. Math. 32, 49–80 (2006)CrossRefGoogle Scholar
  16. 16.
    Grigoryan, M.G., Krotov, V.G.: Luzin’s correction theorem and the coefficients of Fourier expansions in the faber-schauder system. Mat. Zametki 93(2), 172–178 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grigoryan, M.G., Navasardyan, K.A.: On behavior of Fourier coefficients by Walsh systems. J. Contemp. Math. Anal. (Armen. Acad. Sci.) 51(1), 1–13 (2016)CrossRefGoogle Scholar
  18. 18.
    Grigoryan, M.G.: On some properties of orthogonal systems. Izv. Ross. Akad. Nauk, Ser. Mat. 57(5), 75–105 (1993)Google Scholar
  19. 19.
    Grigoryan, M.G., Sargsyan, A.A.: On the universal functions fr the class Lp[0,1]. J. Funct. Anal. 270, 3111–3133 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grigoryan, M.G., Sargsyan, S.A.: On the Fourier-Vilenkin coefficients. Acta Math. Sci. 37(B)(2), 293–300 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Grigoryan, M.G.: Series in the classical systems. LAP LAMBERT Academic Publishing, Saarbruken (2017) (in Russian)Google Scholar
  22. 22.
    Harris, D.C: Almost everywhere divergence of multiple Walsh-Fourier series. Am. Math. Soc. 101(4) (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kolmogorov, A.H.: Sur les fonctions harmoniques conjugees et les series. de Fourier, FM 7, 23–28 (1925)Google Scholar
  24. 24.
    Luzin, N.N.: On the fundamental theorem of the integral calculus. Mat. Sb. 28, 266–294 (1912). (in Russian)Google Scholar
  25. 25.
    Men’shov, D.E.: Sur la convergence uniforme des series de Fourier. Mat. Sb. 11(53), 67–96 (1942) (French; Russian)Google Scholar
  26. 26.
    Men’shov, D.E.: On Fourier series of integrable functions. Trudy Moskov. Mat. Obshch. 1, 5–38 (1952)Google Scholar
  27. 27.
    Paley, R.E.A.C.: A remarkable set of orthogonal functions. Proc. Lond. Math. Soc. 34, 241–279 (1932)CrossRefGoogle Scholar
  28. 28.
    Riss, M.: Sur les fonctions conjugees. Math. Zeit. 27, 214–244 (1927)Google Scholar
  29. 29.
    Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhizhiashvili, L.V.: Some problems in the theory of simple and multiple trigonometric and orthogonal series. Uspekhi Mat. Nauk 28(2), 65–119 (1973) (English transl. In Russian, Math. Surveys 28 1973)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin G. Grigoryan
    • 1
    Email author
  • Tigran M. Grigoryan
    • 1
  • L. S. Simonyan
    • 1
  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations