Advertisement

On Nuclear \(L^p\)-Multipliers Associated to the Harmonic Oscillator

  • Edgardo Samuel Barraza
  • Duván CardonaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 275)

Abstract

In this paper we study multipliers associated to the harmonic oscillator (also called Hermite multipliers) belonging to the ideal of r-nuclear operators on Lebesgue spaces. We also study the nuclear trace and the spectral trace of these operators.

Keywords

Nuclearity Harmonic oscillators Spectra theory Fourier multiplier Hermite multiplier Traces 

References

  1. 1.
    Bagchi, S., Thangavelu, S.: On Hermite pseudo-multipliers. J. Funct. Anal. 268(1), 140–170 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cardona, D.: Nuclear pseudo-differential operators in Besov spaces on compact Lie groups; to appear in J. Fourier Anal. Appl. (2017)Google Scholar
  3. 3.
    Delgado, J.: A trace formula for nuclear operators on \(L^p\). In: Schulze, B.W., Wong, M.W. (Eds.), Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications, vol. 205, pp. 181–193. Birkhuser, Basel (2010)Google Scholar
  4. 4.
    Delgado, J., Wong, M.W.: \(L^p\)-nuclear pseudo-differential operators on \({\mathbb{Z}}\) and \({\mathbb{S}}^1\). Proc. Amer. Math. Soc. 141(11), 3935–394 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Delgado, J.: The trace of nuclear operators on \(L^p(\mu )\) for \(\sigma \)-finite Borel measures on second countable spaces. Integral Equ. Oper. Theor. 68(1), 61–74 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Delgado, J.: On the \(r\)-nuclearity of some integral operators on Lebesgue spaces. Tohoku Math. J. 67(2), no. 1, 125–135 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Delgado, J., Ruzhansky, M., Wang, B.: Approximation property and nuclearity on mixed-norm \(L^p\), modulation and Wiener amalgam spaces. J. Lond. Math. Soc. 94, 391–408 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Delgado, J., Ruzhansky, M., Wang, B.: Grothendieck-Lidskii trace formula for mixed-norm \(L^p\) and variable Lebesgue spaces. to appear in J. Spectr. TheoryGoogle Scholar
  9. 9.
    Delgado, J., Ruzhansky, M.: \(L^p\)-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups., J. Math. Pures Appl. 9(102)(1), 153–172 (2014)Google Scholar
  10. 10.
    Delgado, J., Ruzhansky, M.: Schatten classes on compact manifolds: kernel conditions. J. Funct. Anal. 267(3), 772–798 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Delgado, J., Ruzhansky, M.: Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds. C. R. Acad. Sci. Paris. Ser. I. 352, 779–784 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Delgado, J., Ruzhansky, M.: Fourier multipliers, symbols and nuclearity on compact manifolds. arXiv:1404.6479
  13. 13.
    Delgado, J., Ruzhansky, M.: Schatten-von Neumann classes of integral operators. arXiv:1709.06446
  14. 14.
    Delgado, J., Ruzhansky, M., Tokmagambetov, N.: Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary. arXiv:1505.02261
  15. 15.
    Epperson, J.: Hermite multipliers and pseudo-multipliers. Proc. Amer. Math. Soc. 124(7), 2061–2068 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ghaemi, M.B., Jamalpour Birgani, M., Wong, M.W.: Characterizations of nuclear pseudo-differential operators on S1 with applications to adjoints and products. J. Pseudo-Differ. Oper. Appl. 8(2), 191–201 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grothendieck, A.: La theorie de Fredholm. Bull. Soc. Math. Fr. 84, 319–384 (1956)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16, Providence (1955) (Thesis, Nancy, 1953)Google Scholar
  19. 19.
    Koch, H., Tataru, D.: \(L^p\)-eigenfunction bounds for the Hermite operator. Duke Math. J. 128, 369–392 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Prugovec̆ki, E.: Quantum mechanics in Hilbert space. 2 edn. Pure and Applied Mathematics, 92. Academic Press, Inc, New York-London (1981)Google Scholar
  21. 21.
    Pietsch, A.: Operator ideals. Mathematische Monographien, 16. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)Google Scholar
  22. 22.
    Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser Boston Inc, Boston, MA (2007)zbMATHGoogle Scholar
  23. 23.
    Reinov, O.I., Latif, Q.: Grothendieck-Lidskii theorem for subspaces of Lpspaces. Math. Nachr. 286(2–3), 279–282 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nicola, F., Rodino, L.: Global Pseudo-differential Calculus on Euclidean Spaces. Pseudo-Differential Operators. Theory and Applications, 4. Birkhuser Verlag, Basel (2010)Google Scholar
  25. 25.
    Simon, B.: Distributions and their Hermite expansions. J. Math. Phys. 12, 140–148 (1971)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stempak, K.: Multipliers for eigenfunction expansions of some Schrdinger operators. Proc. Amer. Math. Soc. 93, 477–482 (1985)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Stempak, K., Torre, J.L.: On g-functions for Hermite function expansions. Acta Math. Hung. 109, 99–125 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Stempak, K., Torre, J.L.: BMO results for operators associated to Hermite expansions. Illinois J. Math. 49, 1111–1132 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Thangavelu, S.: Lectures on Hermite and Laguerre Expansions, Math. Notes, vol. 42, Princeton University Press, Princeton (1993)Google Scholar
  30. 30.
    Thangavelu, S.: Hermite and special Hermite expansions revisited. Duke Math. J. 94(2), 257–278 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Artificial IntelligenceUniversidad de SevillaSevilleSpain
  2. 2.Mathematics DepartmentPontificia Universidad JaverianaBogotáColombia

Personalised recommendations