Advertisement

Optimization Studies on a Laser-Driven Neutron Source

  • Jan Philipp DabruckEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As outlined in Sect. 2.1.1 only the most powerful lasers which are capable of producing ultra-short pulses are suitable for the acceleration of light ions. In this regime the efficient acceleration mechanisms are the Target Normal Sheath Acceleration (TSNA) and the Break-Out Afterburner (BOA), respectively, depending on the target thickness.

References

  1. 1.
    D. Jung et al., Characterization of a novel, short pulse laser-driven neutron source. Phys. Plasmas 20(5), 056706, 9 (2013).  https://doi.org/10.1063/1.4804640.  https://doi.org/10.1063/1.4804640
  2. 2.
    M. Roth et al., Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110(4) (2013).  https://doi.org/10.1103/PhysRevLett.110.044802.  https://doi.org/10.1103/PhysRevLett.110.044802
  3. 3.
    D. Jung, Ion acceleration from relativistic laser nano-target interaction. Ph.D. thesis. Munchen: LMU Munich, Faculty of Physics, Jan. 6, 2012. https://edoc.ub.uni-muenchen.de/14074/1/Jung_Daniel.pdf
  4. 4.
    R.E. MacFarlane, A.C. Kahler, Methods for processing ENDF/B-VII with NJOY. Nucl. Data Sheets 111(12), 2739–2890 (2010). ISSN: 0090-3752.  https://doi.org/10.1016/j.nds.2010.11.001. http://www.sciencedirect.com/science/article/pii/S0090375210001006ADSCrossRefGoogle Scholar
  5. 5.
    R. Suzuki, GSYS2.4 manual. Second Edition-\(\alpha \). Technical Report Hokkaido University Hospital. Oct. 28, 2012. http://www.jcprg.org/gsys/2.4/gsys24-e.pdf
  6. 6.
    X-5 Monte Carlo Team. MCNP—A General N-Particle Transport Code, Version 5. LA-UR-03-1987. Technical report Los Alamos National Laboratory. Feb. 1, 2008. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
  7. 7.
    K. Batkov, A. Takibayev, L. Zanini, F. Mezei, Unperturbed moderator brightness in pulsed neutron sources. Nucl. Instrum. Methods A: Accel Spectrom Detect Assoc Equip 729, 500–505 (2013). ISSN: 0168- 9002.  https://doi.org/10.1016/j.nima.2013.07.031. http://www.sciencedirect.com/science/article/pii/S0168900213010073ADSCrossRefGoogle Scholar
  8. 8.
    F. Mezei et al., Low dimensional neutron moderators for enhanced source brightness. J. Neutron Res. 17(2), 101–105 (2014).  https://doi.org/10.3233/JNR-140013. https://arxiv.org/pdf/1311.2474
  9. 9.
    J. Byrne, Neutrons, Nuclei and Matter, An Exploration of the Physics of Slow Neutrons. An Exploration of the Physics of Slow Neutrons. 2nd ed., Dover Publications, Dec. 14, 2011. ISBN: 978-0486482385Google Scholar
  10. 10.
    J.M. Carpenter, Thermally activated release of stored chemical energy in cryogenic media. Nature 330, 358–360, Nov. 26, 1987. ISSN: 0028-0836.  https://doi.org/10.1038/330358a0ADSCrossRefGoogle Scholar
  11. 11.
    E. Shabalin et al., Experimental study of swelling of irradiated solid methane during annealing. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 266(24), 5126–5131 (2008). ISSN: 0168-583X.  https://doi.org/10.1016/j.nimb.2008.09.022. http://www.sciencedirect.com/science/article/pii/S0168583X08010379CrossRefGoogle Scholar
  12. 12.
    M. Huerta Parajon, E. Abad, F.J. Bermejo, A review of the cold neutron moderator materials: neutronic performance and radiation effects. Phys. Procedia 60, 74–82 (2014). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2014.11.012. http://www.sciencedirect.com/science/article/pii/S1875389214005598CrossRefGoogle Scholar
  13. 13.
    V. Ananiev et al., Pelletized cold moderator of the IBR-2 reactor: current status and future development. J. Phys. Conf. Ser. 746(1) (2016).  https://doi.org/10.1088/1742-6596/746/1/012031. http://stacks.iop.org/1742-6596/746/i=1/a=012031Google Scholar
  14. 14.
    F. Cantargi, J.R. Granada, Thermal neutron cross-section libraries for aromatic hydrocarbons. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268(16), 2487–2491 (2010). ISSN: 0168-583X.  https://doi.org/10.1016/j.nimb.2010.04.030. http://www.sciencedirect.com/science/article/pii/S0168583X10004209CrossRefGoogle Scholar
  15. 15.
    U. Rucker, T. Bruckel, T. Cronert, J.P. Dabruck, R. Nabbi, Vorrichtung zur Erzeugung von thermischen Neutronenstrahlen mit Hoher Billanz und Herstellungsverfahren. PUB:(DE-HGF)23 Patent 16166567.4-1556 (EP3091540B1) (Germany). JCNS-2 / PGI-4 / JARA-FIT (2016). http://juser.fz-juelich.de/record/810621

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Georesources and Materials Engineering, Institute for Nuclear Engineering and Technology Transfer (NET)RWTH Aachen UniversityAachenGermany

Personalised recommendations