Advertisement

Concealedness and Weyl Groups

  • Michael Barot
  • Jesús Arturo Jiménez González
  • José-Antonio de la Peña
Chapter
Part of the Algebra and Applications book series (AA, volume 25)

Abstract

The goal of this chapter is twofold. On one hand we analyze integral quadratic forms \(q:\mathbb {Z}^n \to \mathbb {Z}\) such that there is a basis in \(\mathbb {Z}^n\) in which q is unitary (that is, all diagonal coefficients are equal to one). Such quadratic forms are called concealed. Some methods to identify concealed forms are discussed, for instance, in the positive case we make use of spectral properties of graphs. On the other hand we study certain subgroups of the group of isometries associated to unitary forms, so called Weyl groups. Spectral properties of Coxeter transformations are presented, as well as some relations of cyclotomic polynomials with Dynkin and extended Dynkin diagrams. Further properties of Coxeter matrices are considered, including periodicity phenomena in their iterations. Boldt’s methods to construct Coxeter polynomials are reviewed, as well as A’Campo’s and Howlett’s Theorems.

References

  1. 1.
    A’Campo, N.: Sur les valeurs propres de la transformation de Coxeter. Inventiones Math. 33, 61–67 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 10.
    Bernstein, I.N., Gelfand, I.M., Ponomarev, V. A.: Coxeter functors and Gabriel’s theorem, Uspiehi Mat. Nauk, 28 (1973) 19–33 (in Russian). English translation in Russ. Math. Surv. 28 (1973) 17–32MathSciNetCrossRefGoogle Scholar
  4. 13.
    Boldt, A.: Methods to determine Coxeter polynomials. Linear Algebra Appl. 230, 151–164 (1995)MathSciNetCrossRefGoogle Scholar
  5. 16.
    Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, Universitext. Springer, New York, NY (2012)Google Scholar
  6. 20.
    Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts, vol. 75. Cambridge University Press, Cambridge (2010)Google Scholar
  7. 21.
    de la Peña, J.A.: Periodic Coxeter matrices. Linear Algebra Appl. 365, pp. 135–142 (2003). Special issue on linear algebra methods in representation theoryGoogle Scholar
  8. 24.
    Erdös, P.: Some remarks on Euler’s ϕ function. Acta Arith. 4, 10–19 (1954)MathSciNetCrossRefGoogle Scholar
  9. 25.
    Ford, K.: The number of solutions of ψ(x) = m. Ann. Math. 150 (1), 283–311 (1999)Google Scholar
  10. 34.
    Howlett, B.B.: Coxeter groups and M-matrices. Bull. Lond Math. Soc. 14 (2), 127–141 (1982)MathSciNetCrossRefGoogle Scholar
  11. 37.
    Kirillov Jr., A.: Quiver Representations and Quiver Varieties. Graduate Studies in Mathematics, vol. 174. American Mathematical Society, Providence, RI (2016)Google Scholar
  12. 38.
    Ladkani, S.: On the periodicity of Coxeter transformations and the non-negativity of their Euler forms. Linear Algebra Appl. 428, 742–753 (2008)MathSciNetCrossRefGoogle Scholar
  13. 39.
    Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211 (Revised 3rd edn.). Springer, New York, NY (2002)CrossRefGoogle Scholar
  14. 40.
    Mróz, A.: Coxeter energy of graphs. Linear Algebra Appl. 506, 279–307 (2016)MathSciNetCrossRefGoogle Scholar
  15. 41.
    Newman, M.: Integral Matrices. Academic, New York (1972)zbMATHGoogle Scholar
  16. 45.
    Prasolov, V.V.: Polynomials. Algorithms and Computation in Mathematics. Springer, Berlin, Heidelberg, NewYork (2010)Google Scholar
  17. 47.
    Sato, M.: Periodic Coxeter matrices and their associated quadratic forms. Linear Algebra Appl. 406, 99–108 (2005)MathSciNetCrossRefGoogle Scholar
  18. 48.
    Schlafly, A., Wagon, S.: Carmichael’s conjecture on the Euler function is valid below 1010, 000, 000. Math. Comput. 207(63), 415–419 (1999)zbMATHGoogle Scholar
  19. 49.
    Sierpiński, W.: In: Schinzel, A. (ed.) Elementary Theory of Numbers. North-Holland, Amsterdam (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Barot
    • 1
  • Jesús Arturo Jiménez González
    • 2
  • José-Antonio de la Peña
    • 3
  1. 1.Kantonsschule SchaffhausenSchaffhausenSwitzerland
  2. 2.Instituto de MatemáticasUNAMMexico CityMexico
  3. 3.Instituto de MatemáticasMiembro de El Colegio NacionalUNAMMexico

Personalised recommendations