Advertisement

Thermal Analysis of a Cylindrical Sintered Wick Heat Pipe

  • Faiza Mohamed NasirEmail author
  • Mohd. Zulkifly Abdullah
  • Fairosidi Idrus
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 102)

Abstract

The aim of this paper is to present approaches undertaken in analysing the thermal performance of a cylindrical heat pipe with copper-sintered wick. The approaches employed are the thermal resistance network, the lumped capacitance method (LCM) and two-dimensional numerical CFD simulation. The predicted variation of the evaporator temperature with different heat inputs were compared against experimental data. The accuracy of the prediction was also determined by finding the percentage difference of the calculated results with that from the experiments. All methods have shown to produce results that are in good agreement with the experimental works. The best method is the LCM, giving predictions that deviate from experimental data by as much as 3.9%, followed by the thermal resistance network and the numerical simulation with maximum percentage differences of 4.6 and 9.8%, respectively.

Keywords

Heat pipe Simulation Superconductor Resistance network Lumped capacitance 

Nomenclature

δ

Thickness (m)

\(\dot{Q}\)

Heat input (W)

ε

Wick porosity (fraction)

Nu

Nusselt number

μ

Dynamic viscosity (kg/m s)

ρ

Density (kg/m3)

C

Thermal capacity (J/K)

cp

Specific heat capacity (J/kg K)

d

Diameter of the heat pipe (m)

h

Convection heat transfer coefficient (W/m2 K)

k

Thermal conductivity of material (W/m K)

L

Length of the section (m)

Pr

The Prandtl number

R

Thermal resistance (W/K)

r

Radius of the heat pipe (m)

Re

The Reynold number

T

Temperature (K)

t

Time (s)

τ

Time constant (s)

Subscripts

Ambient condition

conv

Convection at the condenser

eff

Effective

a

Adiabatic section

c

Condenser section

e

Evaporator section

i

Inner of the heat pipe

l

Liquid in the wick

o

Outer of the heat pipe

p

Heat pipe wall

w

Wick

p, c

Pipe wall at the condenser

p, e

Pipe wall at the evaporator

tot

Overall

w, c

Liquid-wick combination at the condenser

w, e

Liquid-wick combination at the evaporator

References

  1. 1.
    Tu, S.-T., Zhang, H., Zhou, W.-W.: Corrosion failures of high temperature heat pipes. Eng. Fail. Anal. 6, 363–370 (1999).  https://doi.org/10.1016/S1350-6307(98)00057-0CrossRefGoogle Scholar
  2. 2.
    Ting, C., Chen, C.: Analyzing the heat transfer property of heat pipe influenced by integrated cooling apparatus. Chin. J. Eng. 2014, 1–10 (2014)CrossRefGoogle Scholar
  3. 3.
    Yang, X., Yan, Y.Y., Mullen, D.: Recent developments of lightweight, high performance heat pipes. Appl. Therm. Eng. 33–34, 1–14 (2012).  https://doi.org/10.1016/j.applthermaleng.2011.09.006CrossRefGoogle Scholar
  4. 4.
    Faghri, A.: Heat pipes: review, opportunities and challenges. Front. Heat Pipes 5 (2014)  https://doi.org/10.5098/fhp.5.1
  5. 5.
    Nandy, P., Ariantara, B., Pamungkas, R.A.: Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Appl. Therm. Eng. 9, 1616–1620 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.01.123CrossRefGoogle Scholar
  6. 6.
    Murashko, K., Pyrhönen, J., Laurila, L.: Optimization of the passive thermal control system of a lithium-ion battery with heat pipes embedded in an aluminum plate. In: 2013 15th European Conference on Power Electronics and Applications, EPE 2013, pp. 1–10 (2013)Google Scholar
  7. 7.
    Tran, T.-H., Harmand, S., Desmet, B., Filangi, S.: Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl. Therm. Eng. 63, 551–558 (2014).  https://doi.org/10.1016/j.applthermaleng.2013.11.048CrossRefGoogle Scholar
  8. 8.
    Zhao, R., Gu, J., Liu, J.: An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J. Power Sources 273, 1089–1097 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.007CrossRefGoogle Scholar
  9. 9.
    Chan, C.W., Siqueiros, E., Ling-Chin, J., et al.: Heat utilisation technologies: a critical review of heat pipes. Renew. Sustain. Energy Rev. 50, 615–627 (2015).  https://doi.org/10.1016/j.rser.2015.05.028CrossRefGoogle Scholar
  10. 10.
    Nookaraju, B.C., Rao, P.S.V.K., Nagasarada, S.: Experimental and numerical analysis of thermal performance in heat pipes. Proc. Eng. 127, 800–808 (2015).  https://doi.org/10.1016/j.proeng.2015.11.415CrossRefGoogle Scholar
  11. 11.
    Khalili, M., Shafii, M.B.: Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe. Appl. Therm. Eng. 94, 59–75 (2016).  https://doi.org/10.1016/j.applthermaleng.2015.10.120CrossRefGoogle Scholar
  12. 12.
    Chnookaraju, B., Kurmarao, P.S.V., Sarada, S.N.: Thermal analysis of gravity effected sintered wick heat pipe. Mater. Today Proc. 2, 2179–2187 (2015).  https://doi.org/10.1016/j.matpr.2015.07.230CrossRefGoogle Scholar
  13. 13.
    Jouhara, H., Fadhl, B., Wrobel, L.C.: Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon. Int. J. Hydrogen Energy 44, 1–14 (2016).  https://doi.org/10.1016/j.ijhydene.2016.02.038CrossRefGoogle Scholar
  14. 14.
    Sukchana, T., Pratinthong, N.: A two-phase closed thermosyphon with an adiabatic section using a flexible hose and R-134a filling. Exp. Therm. Fluid Sci. 77, 317–326 (2016).  https://doi.org/10.1016/j.expthermflusci.2016.04.027CrossRefGoogle Scholar
  15. 15.
    Fadhl, B., Wrobel, L.C., Jouhara, H.: CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Appl. Therm. Eng. 78, 482–490 (2015).  https://doi.org/10.1016/j.applthermaleng.2014.12.062CrossRefGoogle Scholar
  16. 16.
    Mroue, H., Ramos, J.B., Wrobel, L.C., Jouhara, H.: Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger. Appl. Therm. Eng. 78, 339–350 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.01.005CrossRefGoogle Scholar
  17. 17.
    Esarte, J., Bernardini, A., Blanco, J.M., Sancibrian, R.: Optimizing the design for a two-phase cooling loop heat pipe: part A: numerical model, validation and application to a case study. Appl. Therm. Eng. 99, 892–904 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.01.150CrossRefGoogle Scholar
  18. 18.
    Nishikawara, M., Nagano, H.: Parametric experiments on a miniature loop heat pipe with PTFE wicks. Int. J. Therm. Sci. 85, 29–39 (2014).  https://doi.org/10.1016/j.ijthermalsci.2014.05.016CrossRefGoogle Scholar
  19. 19.
    Wu, S.C., Wang, D., Chen, Y.M.: Investigating the effect of double-layer wick thickness ratio on heat transfer performance of loop heat pipe. Int. J. Therm. Sci. 86, 292–298 (2014).  https://doi.org/10.1016/j.ijthermalsci.2014.07.014CrossRefGoogle Scholar
  20. 20.
    Pouryoussefi, S.M., Zhang, Y.: Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe. Appl. Therm. Eng. 98, 617–627 (2016).  https://doi.org/10.1016/j.applthermaleng.2015.12.097CrossRefGoogle Scholar
  21. 21.
    Mameli, M., Manno, V., Filippeschi, S., Marengo, M.: Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio. Exp. Therm. Fluid Sci. 59, 222–229 (2014).  https://doi.org/10.1016/j.expthermflusci.2014.04.009CrossRefGoogle Scholar
  22. 22.
    Naik, R., Varadarajan, V., Pundarika, G., Narasimha, K.R.: Experimental investigation and performance evaluation of a closed loop pulsating heat pipe. J. Appl. Fluid Mech. 6, 267–275 (2013).  https://doi.org/10.4028/www.scientific.net/AMM.592-594.1554CrossRefGoogle Scholar
  23. 23.
    Cheng, P.J., Lin, D.T.W., Liu, W.M., et al.: The study of an innovative heat removal model of the aluminum-acetone flat plate heat pipe on high power leds. Trans. Can Soc. Mech. Eng. 39, 739–748 (2015)CrossRefGoogle Scholar
  24. 24.
    Oro, M.V., Bazzo, E.: Flat heat pipes for potential application in fuel cell cooling. Appl. Therm. Eng. 90, 848–857 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.07.055CrossRefGoogle Scholar
  25. 25.
    Chen, J.S., Chou, J.H.: Cooling performance of flat plate heat pipes with different liquid filling ratios. Int. J. Heat Mass Transf. 77, 874–882 (2014).  https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.029CrossRefGoogle Scholar
  26. 26.
    Solomon, A.B., Sekar, M., Yang, S.H.: Analytical expression for thermal conductivity of heat pipe. Appl. Therm. Eng. 100, 462–467 (2016).  https://doi.org/10.1063/1.3386464CrossRefGoogle Scholar
  27. 27.
    Ferrandi, C., Iorizzo, F., Mameli, M., et al.: Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation. Appl. Therm. Eng. 50, 1280–1290 (2013).  https://doi.org/10.1016/j.applthermaleng.2012.07.022CrossRefGoogle Scholar
  28. 28.
    Kumar, V., Gangacharyulu, D., Tathgir, R.G.: Heat transfer studies of a heat pipe. Heat Transf. Eng. 28, 954–965 (2007).  https://doi.org/10.1080/01457630701421810CrossRefGoogle Scholar
  29. 29.
    Faghri, A., Harley, C.: Transient lumped heat pipe analyses. Heat Recover. Syst. CHP 14, 351–363 (1994).  https://doi.org/10.1016/0890-4332(94)90039-6CrossRefGoogle Scholar
  30. 30.
    Liu, F., Lan, F., Chen, J.: Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. J. Power Sources 321, 57–70 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.108CrossRefGoogle Scholar
  31. 31.
    Mahdavi, M., Qiu, S.: Mathematical modeling and analysis of steady state performance of a heat pipe network. Appl. Therm. Eng. 91, 556–573 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.08.017CrossRefGoogle Scholar
  32. 32.
    Zhang, P., Wang, B., Shi, W., et al.: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer. Int. J. Refrig. 58, 172–185 (2015).  https://doi.org/10.1016/j.ijrefrig.2015.06.014CrossRefGoogle Scholar
  33. 33.
    Tsai, T.-E., Wu, G.-W., Chang, C.-C., et al.: Dynamic test method for determining the thermal performances of heat pipes. Int. J. Heat Mass Transf. 53, 4567–4578 (2010).  https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.037CrossRefzbMATHGoogle Scholar
  34. 34.
    Mistry, P.R., Thakkar, F.M., De, S., DasGupta, S.: Experimental validation of a two-dimensional model of the transient and steady-state characteristics of a wicked heat pipe. Exp. Heat Transf. 23, 333–348 (2010).  https://doi.org/10.1080/08916150903564804CrossRefGoogle Scholar
  35. 35.
    Ismail, K.A.R., Zanardit, M.A.: A steady-state model for heat pipes of cross-sections. Appl. Therm. Eng. 16,753–767 (1996)Google Scholar
  36. 36.
    Tournier, J.-M., El-Genk, M.S.: A heat pipe transient analysis model. Int. J. Heat Mass Transf. 37, 753–762 (1994).  https://doi.org/10.1016/0017-9310(94)90113-9CrossRefzbMATHGoogle Scholar
  37. 37.
    Elnaggar, M.H.A., Abdullah, M.Z., Munusamy, S.R.R.: Experimental and numerical studies of finned L-shape heat pipe for notebook-PC cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 978–988 (2013).  https://doi.org/10.1109/TCPMT.2013.2245944CrossRefGoogle Scholar
  38. 38.
    Annamalai, S., Ramalingam, V.: Experimental investigation and CFD analysis of a air cooled condenser heat pipe. Therm. Sci. 15, 759–772 (2011).  https://doi.org/10.2298/TSCI100331023ACrossRefGoogle Scholar
  39. 39.
    Huminic, G., Huminic, A.: CFD study of the heat pipes with water-nanoparticles mixture. In: EASC 4th European Automotive Simulation Conference (2009)Google Scholar
  40. 40.
    Lin, Z., Wang, S., Shirakashi, R., Winston Zhang, L.: Simulation of a miniature oscillating heat pipe in bottom heating mode using CFD with unsteady modeling. Int. J. Heat Mass Transf. 57, 642–656 (2013).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.007CrossRefGoogle Scholar
  41. 41.
    Alizadehdakhel, A., Rahimi, M., Alsairafi, A.A.: CFD modeling of flow and heat transfer in a thermosyphon. Int. Commun. Heat Mass Transf. 37, 312–318 (2010).  https://doi.org/10.1016/j.icheatmasstransfer.2009.09.002CrossRefGoogle Scholar
  42. 42.
    Legierski, J., Wiecek, B., de Mey, G.: Measurements and simulations of transient characteristics of heat pipes. Microelectron. Reliab. 46, 109–115 (2006).  https://doi.org/10.1016/j.microrel.2005.06.003CrossRefGoogle Scholar
  43. 43.
    Idrus, F., Mohamad, N., Zailani, R., et al.: Thermal performance of a cylindrical heat pipe for different heat inputs and inclination angles. Appl. Mech. Mater. 661, 148–153 (2014).  https://doi.org/10.4028/www.scientific.net/AMM.661.148CrossRefGoogle Scholar
  44. 44.
    Peterson, G.P.: An Introduction to Heat Pipes; Modelling, Testing, and Applications. Wiley, New York (1994)Google Scholar
  45. 45.
    Chi, S.: Heat Pipe Theory and Practice: A Sourcebook (Series in Thermal and Fluids Engineering). McGraw-Hill Inc., USA (1976)Google Scholar
  46. 46.
    El-Nasr, A.A., El-Haggar, S.M.: Effective thermal conductivity of heat pipes. Heat Mass Transf. 32, 97–101 (1996).  https://doi.org/10.1007/s002310050097CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Faiza Mohamed Nasir
    • 1
    • 2
  • Mohd. Zulkifly Abdullah
    • 2
  • Fairosidi Idrus
    • 3
  1. 1.Malaysian Spanish Institute, Universiti Kuala LumpurKedahMalaysia
  2. 2.Universiti Sains MalaysiaNibong TebalMalaysia
  3. 3.Universiti Teknologi MARAPermatang PauhMalaysia

Personalised recommendations