Parametric Study of the Two-Stage Pyrolysis Process for Activated Carbon Preparation from Pithecellobium Jiringa

  • Muhamad Husaini Abu BakarEmail author
  • Mohamad-Syafiq Mohd-Kamal
  • Mohd-Nazri Che-Adnan
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 102)


Activated carbon is a type of carbon processed to have small and low volume pores that improve the surface area available for chemical reactions. Currently, the cost of activated carbon is inefficient and it is difficult to obtain activated carbon. Pithecellobium jiringa (Jering) is an organic material that is potentially used as raw material for activated carbon. However, the use of Jering waste as activated carbon is new; the previous researchers never obtained data on the correlation between the parameters. The objective of the project is to design a two-stage pyrolysis process to evaluate the effect of hydroxide (KOH) on the conductivity of activated carbon and to evaluate the effect of ambient temperature on activated carbon. There are two stages in the pyrolysis process; to remove moisture and activate the carbon with KOH. The performance of the heating rate for this space is 5 °C per minute at 30 °C per minute. The highest temperature for this heating coil is 235 °C. The amounts, and molar volumes of KOH can affect the performance of the voltage.


Activated carbon Pyrolysis process Pithecellobium jiringa 



All the experiment and analysis conducted by System Engineering and Energy Laboratory, Universiti Kuala Lumpur, Malaysian Spanish Institute, Kulim Kedah, Malaysia.


  1. 1.
    Farzana, R., Rajarao, R., Bhat, B.R., Sahajwalla, V., et al.: Performance of an activated carbon supercapacitor electrode synthesised from waste compact discs (CDs). J. Ind. Eng. Chem. (2018)Google Scholar
  2. 2.
    Zhang, E., Wang, F., Yu, Q., Scott, K., Wang, X., Diao, G., et al.: Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells. J. Power Sources 360, 21–27 (2017)CrossRefGoogle Scholar
  3. 3.
    Plaza-Recobert, M., Trautwein, G., Pérez-Cadenas, M., Alcañiz-Monge, J., et al.: Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous Mesoporous Mater. 243, 28–38 (2017)CrossRefGoogle Scholar
  4. 4.
    Purnomo, C., Castello, D., Fiori, L., et al.: Granular activated carbon from grape seeds hydrothermal char. Appl. Sci. 8(3), 331 (2018)CrossRefGoogle Scholar
  5. 5.
    Rashidi, N.A., Yusup, S., et al.: Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J. Clean. Prod. 168, 474–486 (2017)CrossRefGoogle Scholar
  6. 6.
    Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kováčová, M., Briančin, J., et al.: Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 143, 643–653 (2017)CrossRefGoogle Scholar
  7. 7.
    Vilella, P.C., Lira, J.A., Azevedo, D.C.S., Bastos-Neto, M., Stefanutti, R., et al.: Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Ind. Crops Prod. 109, 134–140 (2017)CrossRefGoogle Scholar
  8. 8.
    Li, S., Han, K., Li, J., Li, M., Lu, C., et al.: Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300 (2017)CrossRefGoogle Scholar
  9. 9.
    Yang, I., Kwon, D., Kim, M.S., Jung, J.C., et al.: A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon N Y 132, 503–511 (2018)CrossRefGoogle Scholar
  10. 10.
    Choi, M., Park, H.C., Choi, H.S., et al.: Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation. Chem. Eng. Process. Process Intensif. 130, 19–35 (2018)CrossRefGoogle Scholar
  11. 11.
    Kabir, G., Mohd Din, A.T., Hameed, B.H., et al.: Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: a comparative study. Bioresour. Technol. 241, 563–572 (2017)CrossRefGoogle Scholar
  12. 12.
    Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., Jouhara, H., et al.: Potentials of pyrolysis processes in the waste management sector. Energy Procedia 123, 387–394 (2017)CrossRefGoogle Scholar
  13. 13.
    Gagliano, A., Nocera, F., Bruno, M., Blanco, I., et al.: Effectiveness of thermodynamic adaptative equilibrium models for modeling the pyrolysis process. Sustain Energy Technol Assess. 27, 74–82 (2018)Google Scholar
  14. 14.
    Kumar, A., Jena, H.M., et al.: Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Clean. Prod. 137, 1246–1259 (2016)CrossRefGoogle Scholar
  15. 15.
    Idrees, M., Rangari, V., Jeelani, S., et al.: Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J. CO2 Util. 26, 380–387 (2018)CrossRefGoogle Scholar
  16. 16.
    Li, S., Han, K., Si, P., Li, J., Lu, C., et al.: High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors. Int. J. Electrochem. Sci. 13, 1728–1743 (2018)CrossRefGoogle Scholar
  17. 17.
    Horax, K.M., Bao, S., Wang, M., Li, Y., et al.: Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chinese Chem Lett 28, 2290–2294 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, S., Han, K., Li, J., Li, M., Lu, C., et al.: Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 243, 291–300 (2017)CrossRefGoogle Scholar
  19. 19.
    Volperts, A., Dobele, G., Zhurinsh, A., Vervikishko, D., Shkolnikov, E., Ozolinsh, J.: Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. Xinxing Tan Cailiao/New Carbon Mater. 32(4), 319–326 (2017)CrossRefGoogle Scholar
  20. 20.
    Zhang, G., Chen, Y., Chen, Y., Guo, H., et al.: Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater. Res. Bull. 102, 391–398 (2018)CrossRefGoogle Scholar
  21. 21.
    Sridaran, A., Karim, A.A., Bhat, R., et al.: Pithecellobium jiringa legume flour for potential food applications: studies on their physico-chemical and functional properties. Food Chem. 130, 528–535 (2012)CrossRefGoogle Scholar
  22. 22.
    Cheng, Y.F., Bhat, R., et al.: Functional, Physicochemical and Sensory Properties of Novel Cookies Produced by Utilizing Underutilized Jering (Pithecellobium Jiringa Jack). Legume Flour. Elsevier (2016)Google Scholar
  23. 23.
    Bock, S.: New open-source ANSYS-SolidWorks-FLAC3D geometry conversion programs. J Sustain Min 14, 124–132 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhang, J., Zhang, R., Ren, G., Zhang, X., et al.: A method for using solid modeling CAD software to create an implant library for the fabrication of a custom abutment. J. Prosthet. Dent. 117, 209–213 (2017)CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Li, T., Li, Z., et al.: Modeling in SolidWorks and analysis of temperature and thermal stress during construction of intake tower. Water Sci. Eng. 2, 95–102 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhamad Husaini Abu Bakar
    • 1
    Email author
  • Mohamad-Syafiq Mohd-Kamal
    • 1
  • Mohd-Nazri Che-Adnan
    • 1
  1. 1.System Engineering and Energy LaboratoryMalaysian Spanish Institute, Universiti Kuala LumpurKulimMalaysia

Personalised recommendations