Advertisement

Flow Analysis Inside Coated Porous Media

  • Ahmad Kamal Ismail
  • Mohd. Zulkifly Abdullah
  • Abdul Rashid Jamaludin
  • Mohammed Zubair
  • Nor Haslina Ibrahim
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 102)

Abstract

A numerical study has been done to investigate the flow inside porous media (PM). Foam type PM used in the study have been classified into different porosity. The different porosity was due to the fabrication technique which involved the dip coating process. Coating technique is known as a method to increase the performance of PM when used as a medium of combustion. In this study, CFD analysis had been performed with 2D models to observe the flow across the PM. The result shows that the CFD model has the ability to predict the pressure drop caused by different porosities on selected coating materials.

Keywords

Porous media Coating Flow analysis CFD 

Notes

Acknowledgements

The authors would like to thank the Ministry of Higher Education, Malaysia and the Universiti Sains Malaysia (USM) for the financial support for this research work via PRGS Grant No. 6740002 and USM grant 1001/PMekanik/8044057.

References

  1. 1.
    Trimis, D.: Porous burner technology—an overview. Porenbrennertechnologie - EinÜberblick 147(2), 92–99 (2006)Google Scholar
  2. 2.
    Wood, S., Harris, A.T.: Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34(5), 667–684 (2008)CrossRefGoogle Scholar
  3. 3.
    Nandi, B.K., Uppaluri, R., Purkait, M.K., et al.: Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci. 42(1–2), 102–110 (2008)CrossRefGoogle Scholar
  4. 4.
    Muhamad Nor, M.A.A., et al.: Preparation and characterization of ceramic foam produced via polymeric foam replication method. J. Mater. Process. Technol. 207(1–3), 235–239 (2008)CrossRefGoogle Scholar
  5. 5.
    García-Ten, J., et al.: Development of lightweight porcelain stoneware tiles using foaming agents. J. Eur. Ceram. Soc. 32(4), 745–752 (2012)CrossRefGoogle Scholar
  6. 6.
    Khattab, R.M., Wahsh, M.M.S., Khalil, N.M., et al.: Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceram. Int. 38(6), 4723–4728 (2012)CrossRefGoogle Scholar
  7. 7.
    Yang, F., et al.: Effects of sintering temperature on properties of porous mullite/corundum ceramics. Mater. Lett. 73, 36–39 (2012)CrossRefGoogle Scholar
  8. 8.
    Dey, A., Kayal, N., Chakrabarti, O., et al.: Preparation of porous SiCceramics by an infiltration technique. Ceram. Int. 37(1), 223–230 (2011)CrossRefGoogle Scholar
  9. 9.
    Garrido, L.B., et al.: Effect of starch filler content and sintering temperature on the processing of porous 3Y–ZrO2 ceramics. J. Mater. Process. Technol. 209(1), 590–598 (2009)CrossRefGoogle Scholar
  10. 10.
    Pickenacker, O., et al.: Innovative ceramic materials for porous-medium burners. Interceram. 48(5), 326–329 (1999)Google Scholar
  11. 11.
    Shakiba, S., Ebrahimi, R., Shams, M et al.: A new relation for pressure drop through ceramic foams based on dimensional analysis. In: Fourth International Conference On Experimental Mechanics. International Society for Optics and PhotonicsGoogle Scholar
  12. 12.
    Shakiba S, Ebrahimi R, Shams M et al (2009) A study on the effects of cold and hot fluids on pressure drop through ceramic foams. In: Fourth International Conference on Experimental Mechanics. International Society for Optics and PhotonicsGoogle Scholar
  13. 13.
    Shakiba, S., Ebrahimi, R., Shams, M., et al.: Experimental investigation of pressure drop through ceramic foams: an empirical model for hot and cold flow. J. Fluids Eng. 133(11), 111105 (2011)CrossRefGoogle Scholar
  14. 14.
    Liu, S., Afacan, A., Masliyah, J., et al.: Steady incompressible laminar flow in porous media. Chem. Eng. Sci. 49(21), 3565–3586 (1994)CrossRefGoogle Scholar
  15. 15.
    Macini, P., Mesini, E., Viola, R., et al.: Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Petrol. Sci. Eng. 77(3–4), 365–374 (2011)CrossRefGoogle Scholar
  16. 16.
    Innocentini, M.D., et al.: Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension. J. Hazard. Mater. 162(1), 212–221 (2009)CrossRefGoogle Scholar
  17. 17.
    Innocentini, M.D., et al.: Prediction of ceramic foams permeability using Ergun’s equation. Mater. Res. 2(4), 283–289 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmad Kamal Ismail
    • 1
  • Mohd. Zulkifly Abdullah
    • 2
  • Abdul Rashid Jamaludin
    • 3
  • Mohammed Zubair
    • 4
  • Nor Haslina Ibrahim
    • 1
  1. 1.Universiti Kuala Lumpur, Malaysian Spanish InstituteKulimMalaysia
  2. 2.School of Aerospace EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  3. 3.Ceramic Research Company Sdn.Bhd. (180916-D)KlangMalaysia
  4. 4.Department of Aeronautical & Automobile EngineeringManipal Institute of TechnologyManipalIndia

Personalised recommendations