Advertisement

Nutrition in Relation to Organic Aquaculture: Sources and Strategies

  • Elena MenteEmail author
  • Alfred Jokumsen
  • Chris G. Carter
  • Efi Antonopoulou
  • Albert G. J. Tacon
Chapter

Abstract

The discussion and the debate on organic feeds for organic aquaculture is still open due to the balance that needs to be achieved between the fundamental rules in organic culture and the reality of the supply of the feed sources for aquafeeds. This chapter covers aspects of current use of formulated feeds, feed composition, aquafeed technology, sustainable alternatives to common feed ingredients, nutritional physiology and general nutritional principles and product quality in the context of the organic aquaculture. It reviews new knowledge and presents research results to update and may modify the criteria and standards for organic aquaculture in relation to nutrition and thus to provide high-quality products for the consumers. This chapter is based on the current European regulation on organic aquaculture, as well as on the proposed revision of the European regulation, which is currently being approved after a long process for getting the agreement of the European Parliament, European Council and the European Commission.

Keywords

Feeds Diets Nutrition Ingredients Formulation 

References

  1. Aas TS, Hatlen B, Grisdale-Helland B, Terjesen BF, Bakke-McKellep AM, Helland SJ (2006) Effects of diets containing a bacterial protein meal on growth and feed utilisation in rainbow trout (Oncorhyncus mykiss). Aquaculture 261:357–368CrossRefGoogle Scholar
  2. Adesulu EA, Mustapha AK (2000) Use of housefly maggots as a fishmeal replacer in tilapia culture: a recent vogue in Nigeria. In: Fitzsimmons K, Filho JC (eds) 5th International Symposium on Tilapia Aquaculture, Rio de Janeiro, Brazil, , vol 1. p 138Google Scholar
  3. Ajani EK, Nwanna LC, Musa BO (2004) Replacement of fishmeal with maggot meal in the diets of Nile tilapia, Oreochromis niloticus. World Aquac 35(1):52–54Google Scholar
  4. Albrektsen S, Hope B, Aksnes A (2009) Phosphorous (P) deficiency due to low P availability in fishmeal produced from blue whiting (Micromesistius poutassou) in feed for under-yearling Atlantic salmon (Salmo salar) smolt. Aquaculture 296:318–328CrossRefGoogle Scholar
  5. Alday-Sanz V (2011) The shrimp book. Nottingham University Press, Nottingham, p 930. ISBN-10: 1904761593Google Scholar
  6. Alexis MN, Karanikolas KK, Richards RH (1997) Pathological findings owing to the lack of ascorbic acid in cultured gilthead bream (Sparus aurata L.). Aquaculture 151:209–218CrossRefGoogle Scholar
  7. Altan Ö, Korkut AY (2011) Appearent digestibility of plant protein based diets by European Sea bass Dicentrarchus labrax L., 1758. Turk J Fish Aquat Sci 11:87–92CrossRefGoogle Scholar
  8. Ambasankar K, Ahmad SA, Dayal JS (2006) Effect of dietary phosphorus on growth and its excretion in Tiger shrimp, Penaeus monodon. Asian Fish Sci 19:21–26Google Scholar
  9. Aniebo AO, Owen OJ (2010) Effects of age and method of drying on the proximate composition of Housefly Larvae (Musca domestica Linnaeus) meal (HFLM). Pak J Nutr 9:485–487CrossRefGoogle Scholar
  10. Anupama, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 6:459–479CrossRefGoogle Scholar
  11. Atalah E, Cruz CMH, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270:178–185CrossRefGoogle Scholar
  12. Azevedo PA, Cho CY, Bureau DP (1998) Effects of feeding level and water temperature on growth, nutrient and energy utilization and waste outputs of rainbow trout (Oncorhynchus mykiss). Aquat Living Resour 11:227–238CrossRefGoogle Scholar
  13. Baron C, Svendsen G, Lund I, Jokumsen A, Nielsen H, Jacobsen C (2013) Organic plant ingredients in the diet of Rainbow Trout (Oncorhynchus mykiss). Impact on fish muscle composition and oxidative stability. Eur J Lipid Sci Technol 115:0000–0000.  https://doi.org/10.1002/ejlt.201300157. CrossRefGoogle Scholar
  14. Bell MV, Dick JR (2004) Changes in capacity to synthesise 22:6n-3 during early development in rainbow trout (Oncorhynchus mykiss). Aquaculture 235:393–409CrossRefGoogle Scholar
  15. Bell JG, Koppe W (2011) Lipids in aquafeeds. In: Turchini GM, Ng W-K, Tocher DR (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. Taylor & Francis, CRC Press, Boca Raton, pp 21–59Google Scholar
  16. Bell JG, Tocher DR, Farndale BM, Cox DI, McKinney RW, Sargent JR (1997) The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing Parr-Smolt transformation. Lipids 32(5):515–525PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bell MV, Dick JR, Porter AEA (2001) Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss). Lipids 36:1153–1159PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bendiksen EA, Johnsen CA, Olsen HJ, Jobling M (2011) Sustainable aquafeeds: progress towards reduced reliance upon marine ingredients in diets for farmed Atlantic salmon (Salmo salar L.). Aquaculture 314:132–139CrossRefGoogle Scholar
  19. Berge GM, Baeverfjord G, Skrede A, Storebakken T (2005) Bacterial protein grown on natural gas as protein source in diets for Atlantic salmon, Salmo salar, in saltwater. Aquaculture 244:233–240CrossRefGoogle Scholar
  20. Bergleiter S, Berner U, Censkowsky U, Julia-Camprodon G (2009) Organic aquaculture 2009. Production and markets. Naturland e.V. and Organic Services GmbH, Munich. Report, 120 pagesGoogle Scholar
  21. Bondari K, Sheppard DC (1987) Soldier fly Hermetia illucens L., as feed for channel catfish, Ictalurus punctatus (Rafinesque) and blue tilapia, (Oreochromis aureus) (Steindachner). Aquac Fish Manag 18:209–220Google Scholar
  22. Borquez A, Serrano E, Dantagnan P, Carrasco J, Hernandez A (2011) Feeding high inclusion of whole grain white lupin (Lupinus albus) to rainbow trout (Oncorhynchus mykiss): effects on growth, nutrient digestibility, liver and intestine histology and muscle fatty acid composition. Aquac Res 42:1067–1078CrossRefGoogle Scholar
  23. Breck O, Bjerkas E, Campbell P, Arnesen P, Haldorsen P, Waagbø R (2003) Cataract preventative role of mammalian blood meal, histidine, iron and zinc in diets for Atlantic salmon (Salmo salar) of different strains. Aquac Nutr 9:341–350CrossRefGoogle Scholar
  24. Brown MR, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255CrossRefGoogle Scholar
  25. Bureau DP, Harris AM, Cho CY (1999) Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture 180:345–358CrossRefGoogle Scholar
  26. Buzzi M, Henderson RJ, Sargent JR (1996) The desaturation and elongation of acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta 1299:35–244Google Scholar
  27. Cahu CL, Infante JLZ, Peres A, Quazuguel P, Le Gall MM (1998) Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161:479–489CrossRefGoogle Scholar
  28. Carter CG, Hauler RC (2000) Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185:299–311CrossRefGoogle Scholar
  29. Carter CG, Houlihan DF (2001) Protein synthesis. In: Wright PA, Anderson PM (eds) Nitrogen excretion, fish physiology, vol 19. Academic, New York, pp 31–75CrossRefGoogle Scholar
  30. Carter CG, Sajjadi M (2011) Low fishmeal diets for Atlantic salmon, Salmo salar L. using soy protein concentrate treated with graded levels of phytase. Aquac Int 19:431–444CrossRefGoogle Scholar
  31. Carter CG, Katersky RS, Barnes J, Hauler RC, Bridle AR (2010) Redefining nutrient requirements of fish in sub-optimum environments. In: Crovetto GM (ed) Energy and protein metabolism and nutrition, EAAP Publication 127. Wageningen Academic Publishers, Wageningen, pp 445–446Google Scholar
  32. Carter CG, Mente E, Katersky Barnes RS, Nengas I (2012) Protein synthesis in gilthead sea bream: response to partial fishmeal replacement. Br J Nutr 108:2190–2197PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chebbaki K, Akharbach H, Talbaoui E, Abrehouch A, Ait A, Sedki S, Ben Bani A, Idaomar M (2010) Effect of fish meal replacement by protein sources on the extruded and pressed diet of European sea bass juvenile (Dicentrarchus labrax). Agric Biol J N Am 1:704–710Google Scholar
  34. Chen HY (1993) Requirements of marine shrimp, Penaeus monodon, juveniles for phosphatidylcholine and cholesterol. Aquaculture 109:165–176CrossRefGoogle Scholar
  35. Chen HY (1998) Nutritional requirements of the black tiger shrimp: Penaeus monodon. Rev Fish Sci 6(1):79–95CrossRefGoogle Scholar
  36. Choubert G, Mendes-Pinto MM, Morais R (2006) Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: effect of dietary astaxanthin and lipid sources. Aquaculture 257:429–436CrossRefGoogle Scholar
  37. Codabaccus BM, Bridle AR, Nichols PD, Carter CG (2011) Effect of feeding Atlantic salmon (Salmo salar L.) a diet enriched with stearidonic acid from parr to smolt on growth and n-3 LC-PUFA biosynthesis. Br J Nutr 105:1772–1782PubMedCrossRefPubMedCentralGoogle Scholar
  38. Conklin DE (2003) Use of soybean meal in the diets of marine shrimp, Technical review paper AQ 144–2003. Department of Animal Science, University of California, Davis, United Soybean Board and American Soybean Association, DavisGoogle Scholar
  39. Cottee SY, Petersan P (2009) Animal welfare and organic aquaculture in open systems. J Agric Environ Ethics 22:437–461CrossRefGoogle Scholar
  40. Cousin M (1995) Contribution à l’étude de utilisation des glucides et du rapport proteine/énergie chez P. vannamei et P. stylrostris. Thèse INA/PG. Paris. p 201Google Scholar
  41. Coutinho P, Rema P, Otero A, Pereira O, Fabregas J (2006) Use of biomass of the marine microalga Isochrysis galbana in the nutrition of goldfish (Carassius auratus) larvae as source of protein and vitamins. Aquac Res 37:793–798CrossRefGoogle Scholar
  42. Crampton VO, Nanton DA, Ruohonen K, Skjervold PO, El-Mowafi A (2010) Demonstration of salmon farming as a net producer of fish protein and oil. Aquac Nutr 16:437–446.  https://doi.org/10.1111/j.1365-2095.2010.00780.x CrossRefGoogle Scholar
  43. Cruz-Suárez LE, Antimo-Pérez JS, Luna-Mendoza N, Tapia-Salazar M, Guajardo-Barbosa C, Ricque-Marie D (2000) Relaciones proteína/energía y proteína vegetal/animal optimas en alimentos de engorda para Litopenaeus vannamei y L. stylirostris. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19–22 Noviembre, 2000. MéridaGoogle Scholar
  44. Cummins VC Jr, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J, Webster CD (2017) Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for pacific white shrimp (Litopenaeus vannamei). Aquaculture 473:337–344.  https://doi.org/10.1016/j.aquaculture.2017.02.022 CrossRefGoogle Scholar
  45. Dallaire V, Lessard P, Vandenberg G, de la Noue J (2007) Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresour Technol 98:1433–1439PubMedCrossRefPubMedCentralGoogle Scholar
  46. Davis DA, Lawrence AL, Gatlin DM (1993) Response of Penaeus vannamei to dietary calcium, phosphorus and calcium: phosphorus ratio. J World Aquacult Soc 24(4):504–515CrossRefGoogle Scholar
  47. Dayal JS, Ali SA, Ambasankar K, Singh P (2003) Effect of dietary protein level on its in vitro and in vivo digestibility in the tiger shrimp Penaeus monodon (Crustacea): Penaeidae. Indian J Mar Sci 32(2):151–155Google Scholar
  48. De Francesco M, Parisi G, Pérez-Sanchez J, Gomez-Réqueni P, Médale F, Kaushik SJ, Mecatti M, Poli BM (2007) Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits. Aquac Nutr 13:361–372CrossRefGoogle Scholar
  49. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG et al (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350–353:134–142CrossRefGoogle Scholar
  50. Devic E, Leschen W, Murray F, Little DC (2018) Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing black soldier fly (Hermetia illucens) larvae meal. Aquac Nutr 24:416–423Google Scholar
  51. Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J et al (2009) Dietary mannanoligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J Anim Sci 87:3226–3234PubMedCrossRefPubMedCentralGoogle Scholar
  52. Domínguez D, Rimoldi S, Robaina LE, Torrecillas S, Terova G, Zamorano MJ, Karalazos V, Hamre K, Izquierdo M (2017) Inorganic, organic, and encapsulated minerals in vegetable meal based diets for Sparus aurata (Linnaeus, 1758). PeerJ 5:e3710.  https://doi.org/10.7717/peerj.3710 CrossRefPubMedPubMedCentralGoogle Scholar
  53. EC 834/2007 Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91Google Scholar
  54. EC 889/2008 Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products regarding organic production, labelling and controlGoogle Scholar
  55. EC 710/2009 Commission Regulation amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. Official Journal of the European UnionGoogle Scholar
  56. EC 1380/2013 Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/ECGoogle Scholar
  57. EC 1358/2014 Comm. Reg.- No 1358/2014 of 18 December 2014 amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 as regards the origin of organic aquaculture animals, aquaculture husbandry practices, feed for organic aquaculture animals and products and substances allowed for use in organic aquacultureGoogle Scholar
  58. EC 673/2016 Commission Implementing Regulation (EU) 2016/673 of 29 April 2016 amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and controlGoogle Scholar
  59. EFSA – European Food Safety Authority (2011) Scientific opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA J 9(1):1947CrossRefGoogle Scholar
  60. El-Haroun ER, Bureau DP (2007) Comparison of bioavailability of lysine in blood meals of various origins to that of L-lysine HCl for rainbow trout (Oncorhynchus mykiss). Aquaculture 262:402–409CrossRefGoogle Scholar
  61. El-Nawwi SA, El-Kader AA (1996) Production of single-cell protein and cellulase from sugarcane bagasse: effect of culture factors. Biomass Bioenergy 11:361–364CrossRefGoogle Scholar
  62. Emerenciano M, Ballester EL, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res 43(3):447–457CrossRefGoogle Scholar
  63. Enami HR (2011) A review of using canola/rapeseed meal in aquaculture feeding. J Fish Aquat Sci 6:22–36CrossRefGoogle Scholar
  64. Eroldogan T, Turchini GM, Yilmaz AH, Tasbozan O, Engin K, Ölçülü A, Özsahinoglu I, Mumogullarinda P (2012) Potential of cottonseed oil as fish oil replacer in European Sea Bass feed formulation. Turk J Fish Aquat Sci 12:787–797CrossRefGoogle Scholar
  65. Espe M, Lemme A, Petri A, El-Mowafi A (2006) Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture 255:255–262CrossRefGoogle Scholar
  66. FAO (2011) Private standards and certification in fisheries and aquaculture. Current practice and emerging issues, FAO Fisheries and Aquaculture Technical paper. No. 553. Food and Agriculture Organisation of the United Nations (FAO), Rome, p 181Google Scholar
  67. Fasakin EA, Balogun AM, Ajayi OO (2003) Evaluation of full fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac Res 34:733–738CrossRefGoogle Scholar
  68. Figueiredo-Silva A, Rocha E, Dias J, Silva P, Rema P, Gomes E, Valente LMP (2004) Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. Aquac Nutr 11:147–155CrossRefGoogle Scholar
  69. Fountoulaki EE, Alexis MN, Nengas I (2005) Protein and energy requirements of gilthead bream (Sparus aurata, L.) fingerlings: preliminary results. In: Montero D, Basurco B, Nengas I, Alexis M, Izquierdo M (eds) Mediterranean fish nutrition, CIHEAM Cahiers Options Méditerranéennes 63. CIHEAM, Zaragoza, pp 19–26Google Scholar
  70. Fournier V, Gouillou-Coustans MF, Kaushik SJ (2000) Hepatic ascorbic acid saturation is the most stringent response criterion for determining the vitamin C requirement of juvenile European sea bass (Dicentrarchus labrax). J Nutr 130:617–620PubMedCrossRefPubMedCentralGoogle Scholar
  71. Fox J, Treece GD, Sanchez D (1998) Shrimp nutrition and feed management. Methods for improving shrimp farming in Central America. Univ Centroam Cent Investig Ecosistemas Acuáticos 2001:65–90Google Scholar
  72. Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant derived alternative fish feed ingredients and their effects in fish. Aquaculture 199:197–227CrossRefGoogle Scholar
  73. Freuchtnicht GW, Bark LE, Malecha SR, Stanley RW (1988) The effect of protein level in the feed on growth performance of fresh water prawn Macrobrachium rosenbergii individually recorded in clear water flow through aquaria. Presented at the 19th annual meeting of the world aquaculture society, Honolulu, HawaiiGoogle Scholar
  74. Fujii K, Imazato E, Nakashima H, Ooi O, Saeki A (2006) Isolation of the non-fastidious microalga with astaxanthin-accumulating property and its potential for application to aquaculture. Aquaculture 261:285–293CrossRefGoogle Scholar
  75. Ganuza E, Benitez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo MS (2008) Crypthecodinium cohnii and Schizochytrium sp as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277:109–116CrossRefGoogle Scholar
  76. Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou E, Mola P, Chatzifotis S (2016) Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 220:34–45CrossRefGoogle Scholar
  77. Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, Caruso G (2018) Fishmeal alternative protein sources for aquaculture feeds. In: Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, Caruso G (eds) Feeds for the aquaculture sector: current situation and alternative sources. Springer, Cham, pp 1–28CrossRefGoogle Scholar
  78. Gatesoupe FJ, Huelvan C, Le Bayon N, Severe A, Aasen IM, Degnes KF et al (2014) The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422:47–53CrossRefGoogle Scholar
  79. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu GS, Krogdahl A, Nelson R, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds; a review. Aquac Res 38:551–579CrossRefGoogle Scholar
  80. Gatta PP, Pirini M, Testi S, Vignola G, Monetti PG (2000) The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquac Nutr 6:47–52CrossRefGoogle Scholar
  81. Geay F, Santigosa I, Culi E, Corporeau C, Boudry P, Dreano Y, Corcos L, Bodin N, Vandeputte M, Zambonino-Infante JL, Mazurais D et al (2010) Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comp Biochem Physiol B 156:237–243PubMedCrossRefPubMedCentralGoogle Scholar
  82. Geay F, Ferraresso S, Zambonino Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik SJ, Cahu C, Mazurais C (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics 12:522–539PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gensch C-O, Graulich K, Teufel J (2004) Ecostudy of Lucanthin® Pink for Salmon production. BASF, Ludwigshafen. 23ppGoogle Scholar
  84. Glencross BD, Smith DM, Thomas MR, Williams KC (2002) The effects of dietary lipid amount and fatty-acid composition on the digestibility of lipids by the prawn, Penaeus monodon. Aquaculture 205(1–2):157–169CrossRefGoogle Scholar
  85. Glencross B, Rutherford N, Hawkins W (2011) A comparison of the growth performance of rainbow trout (Oncorhynchus mykiss) when fed soybean, narrow-leaf or yellow lupin meals in extruded diets. Aquac Nutr 17:317–325CrossRefGoogle Scholar
  86. Gomes da Silva J, Oliva Teles A (1998) Apparent digestibility of feedstuffs in seabass (Dicentrarchus labrax) juveniles. Aquat Living Resour 11:187–191CrossRefGoogle Scholar
  87. Gong H, Lawrence AL, Jiang D-H, Castille FL, Gatlin DMI (2000) Lipid nutrition of juvenile Litopenaeus vannamei I. Dietary cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture 190:305–324CrossRefGoogle Scholar
  88. Grisdale-Helland B, Ruyter B, Rosenlund G, Obach A, Helland SJ, Sandberg MG, Standal H, Røsjø C (2002) Influence of high contents of dietary soybean oil on growth, feed utilization, tissue fatty acid composition, heart histology and standard oxygen consumption of Atlantic salmon (Salmo salar) raised at two temperatures. Aquaculture 207:311–329CrossRefGoogle Scholar
  89. Grisdale-Helland B, Gatlin DM, Corrent E, Helland SJ (2011) The minimum dietary lysine requirement, maintenance requirement and efficiency of lysine utilization for growth of Atlantic salmon smolts. Aquac Res 42:1509–1529CrossRefGoogle Scholar
  90. Grisdale-Helland B, Lemme A, Helland SJ (2013) Threonine requirement for maintenance and efficiency of utilization for threonine accretion in Atlantic salmon smolts determined using increasing ration levels. Aquaculture 372–375:158–166CrossRefGoogle Scholar
  91. Hale OM (1973) Dried Hermetia illucens larvae (Stratiomyidae) as a feed additive for poultry. J Georgia Entomol Soc 8:16–20Google Scholar
  92. Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Review article. Aquacult Res 41:770–776CrossRefGoogle Scholar
  93. Hardy RW, Barrows FT (2002) Diet formulation and manufacture. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic, London, pp 505–600Google Scholar
  94. He H, Lawrence AL (1993a) Vitamin C requirements of the shrimp Penaeus vannamei. Aquaculture 114(3):305–316CrossRefGoogle Scholar
  95. He H, Lawrence AL (1993b) Vitamin E requirement of Penaeus vannamei. Aquaculture 118(3):245–255CrossRefGoogle Scholar
  96. Henrique MMF, Gomes EF, Gouillou-Coustans MF, Oliva-Teles A, Davies SJ (1998) Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquaculture 161:415–426CrossRefGoogle Scholar
  97. Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22CrossRefGoogle Scholar
  98. Hidalgo F, Alliot E (1988) Influence of water temperature on protein requirement and protein utilization in juvenile sea bass, Dicentrarchus labrax. Aquaculture 72:115–129CrossRefGoogle Scholar
  99. Hixon SM, Parrish CC, Anderson DM (2014) Full substitution of fish oil with camelina (Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effects on tissue lipids and sensory quality. Food Chem 157:51–61CrossRefGoogle Scholar
  100. Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G (2017) Dietary inclusion of Tenebrio molitor larvae meal: effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 476:49–58CrossRefGoogle Scholar
  101. IFFO (2010) Global standard for responsible supply. Requirements for certification. International Fishmeal and Fish oil Organisation (IFFO), p 24. 1st November 2010Google Scholar
  102. Izquierdo MS, Obach A, Arantzamendi L, Montero D, Robaina L, Rosenlund G (2003) Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquacult Nutr 9:397–407CrossRefGoogle Scholar
  103. Kanazawa A, Teshima S, Sakamoto M (1985) Effects of dietary lipids, fatty acids and phospholipids on growth and survival of prawn (Peaneus Japonicus) larvae. Aquaculture 50:39–49Google Scholar
  104. Karapanagiotidis IT, Daskalopoulou E, Vogiatzis I, Rumbos C, Mente E, Athanassiou CG (2014) Substitution of fishmeal by fly Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). HydroMedit 2014:110–114Google Scholar
  105. Karapanagiotidis IT, Psofakis P, Mente E, Malandrakis E, Golomazou E (2018) Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquacult Nutr, 1–12Google Scholar
  106. Kaushik SJ, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res 41:322–332CrossRefGoogle Scholar
  107. Kaushik SJ, Gouillou-Coustans MF, Cho CY (1998) Application of the recommendations on vitamin requirements of finfish by NRC (1993) to salmonids and sea bass using practical and purified diets. Aquaculture 161:463–474CrossRefGoogle Scholar
  108. Kaushik SJ, Covès D, Dutto G, Blanc D (2004) Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230:391–404CrossRefGoogle Scholar
  109. Kissil GW, Cowey CB, Adron JW, Richards RH (1981) Pyridoxine requirements of the gilthead bream, Sparus aurata. Aquaculture 23:243–255CrossRefGoogle Scholar
  110. Kjær MA, Todorcevic M, Torstensen BE, Vegusdal A, Ruyter B (2008) Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic Salmon. Lipids 43(9):813–827PubMedCrossRefPubMedCentralGoogle Scholar
  111. Kontara EKM, Coutteau P, Sorgeloos P (1997) Effect of dietary phospholipid on requirements for and incorporation of n − 3 highly unsaturated fatty acids in postlarval Penaeus japonicus Bate. Aquaculture 158:305–320CrossRefGoogle Scholar
  112. Kormas KA, Meziti A, Mente E, Fretzos A (2014) Gut microorganisms in organic and conventional sea bream. Microbiol Open 3:718–728.  https://doi.org/10.1002/mbo3.202 CrossRefGoogle Scholar
  113. KRAV (2009) Standards for KRAV-certified production – January 2009. www.krav.seGoogle Scholar
  114. KRAV (2010) Standards for Krav-certified production, 2010. kap 5: Djurhållning. http://www.krav.se/KravRegler
  115. Krogdahl A, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important anti-nutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344CrossRefGoogle Scholar
  116. Kuhn DD, Boardman GD, Lawrence AL, Marsh L, Flick GJ (2009) Microbial floc meals as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture 296:51–57CrossRefGoogle Scholar
  117. Kureshy N, Davis DA (2000) Metabolic requirement for protein by pacific white shrimp, Litopenaeus vannamei. Memorias del V symposium Internacional de Nutricion Acuicola. 19–22 Noviembre, 2000. MéridaGoogle Scholar
  118. Lanari D, D’Agaro E (2005) Alternative plant protein sources in sea bass diets. Ital J Anim Sci 4:365–374CrossRefGoogle Scholar
  119. Lands WEM (1992) Biochemistry and physiology of n-3 fatty acids. FASEB J 6(8):2530–2536PubMedCrossRefPubMedCentralGoogle Scholar
  120. Larsen BK, Dalsgaard J, Pedersen PB (2012) Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss). Aquaculture 326–329:90–98CrossRefGoogle Scholar
  121. Lazzari R, Baldisserotto B (2008) Nitrogen and phosphorus waste in fish farming. B Inst Pesca São Paulo 34(4):591–600Google Scholar
  122. Lee MH, Shiau SY (2002) Dietary vitamin C and its derivates affect immune response in grass shrimp, Penaeus monodon. Fish Shellfish Immunol 12:119–129PubMedCrossRefPubMedCentralGoogle Scholar
  123. Lee MH, Shiau SY (2004) Vitamin E requirements of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol 16(4):475–485PubMedCrossRefPubMedCentralGoogle Scholar
  124. Li P, Gatlin DM (2003) Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops x M. saxatilis). Aquaculture 219:681–692CrossRefGoogle Scholar
  125. Lund I, Dalsgaard J, Rasmussen HT, Holm J, Jokumsen A (2011) Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture 321:259–266.  https://doi.org/10.1016/j.aquaculture.2011.09.028 CrossRefGoogle Scholar
  126. Lund I, Dalsgaard J, Hansen JH, Jacobsen C, Holm J, Jokumsen A (2012) Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss). Int J Anim Biosci 1–10. doi: https://doi.org/10.1017/S1751731112001693
  127. Magalhães R, Sanchez-Lopez A, Leal RS, Martınez-Lorens S, Oliva-Teles A, Peres H (2017) Black soldier fly (Hermetia illucens) prepupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476:79–85.  https://doi.org/10.1016/j.aquaculture.2017.04.021 CrossRefGoogle Scholar
  128. Mahmood SH, Shahadat AM, Hossain ML (2005) Growth of black tiger shrimp, Penaeus monodon, on fishmeal based formulated diet in a Southeastern Coastal shrimp farm of Bangladesh. Pak J Zool 37:95–100Google Scholar
  129. Mai KS, Zhang L, Ai QH, Duan QY, Li HT, Wan JL, Liufu ZG (2006) Dietary lysine requirement of juvenile seabass (Lateolabrax japonicas). Aquaculture 258:535–542CrossRefGoogle Scholar
  130. Mathews JA, Tan H, Moore MJB, Bell G (2011) A conceptual lignocellulosic ‘feed+fuel’ biorefinery and its application to the linked biofuel and cattle raising industries in Brazil. Energy Policy 39:4932–4938CrossRefGoogle Scholar
  131. McVey JP (1993) CRC handbook of mariculture, Crustacean aquaculture, vol I, 2nd edn. CRC Press, Boca Raton. 526 ppGoogle Scholar
  132. Menasveta P, Worawattanamateekul W, Latscha T, Clark JS (1993) Correction of black tiger prawn (Penaeus monodon fabricius) coloration by astaxanthin. Aquac Eng 12(4):203–213CrossRefGoogle Scholar
  133. Mente E, Karalazos V, Karapanagiotidis IT, Pita C (2011) Nutrition in organic aquaculture: an inquiry and a discourse. Aquac Nutr 17:798–817CrossRefGoogle Scholar
  134. Mente E, Stratakos Α, Boziaris IS, Kormas KA, Karalazos V, Karapanagiotidis IT, Catsiki AV, Leondiadis L (2012) The effect of organic and conventional production methods on sea bream growth, health and body composition; a field experiment. Sci Mar.  https://doi.org/10.3989/scimar.03411.07C
  135. Mente E, Gannon AT, Nikouli E, Kormas K (2016) Gut microbial communities associated with the molting stages of the giant freshwater prawn Macrobrachium rosenbergii prawn. Aquaculture 463:181–188CrossRefGoogle Scholar
  136. Mente E, Pierce GJ, Antonopoulou E, Stead D, Martin SAM (2017) Postprandial hepatic protein expression in trout Oncorhynchus mykiss a proteomics examination. Biochem Biophys Rep 9:79–85PubMedPubMedCentralGoogle Scholar
  137. Merchie G, Kontara E, Lavens P, Robles R, Kurmaly K, Sorgeloos P (1998) Effect of vitamin C and astaxanthin on stress and disease resistance of postlarval tiger shrimp, Penaeus monodon (Fabricius). Aquac Res 29(8):579–585CrossRefGoogle Scholar
  138. Meziti A, Ramette A, Mente E, Kormas KA (2010) Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiol Ecol 74:472–484PubMedCrossRefPubMedCentralGoogle Scholar
  139. Meziti A, Mente E, Kormas AK (2012) Gut bacteria associated with different diets in reared Nephrops norvegicus. Syst Appl Microbiol 35:473–482PubMedCrossRefPubMedCentralGoogle Scholar
  140. Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembialkowska E, Quaglio G, Grandjean P (2017) Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 16:111.  https://doi.org/10.1186/s12940-017-0315-4 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Miller MR, Nichols PD, Bridle AR, Carter CG (2008) Increased elongase and desaturase gene expression with stearidonic acid enriched diet did not enhance long-chain omega 3 content of seawater Atlantic salmon (Salmo salar L.). J Nutr 138:2179–2185PubMedCrossRefPubMedCentralGoogle Scholar
  142. Mitra G, Mukhopadhyay PK, Chattopadhyay DN (2005) Nutrition and feeding in freshwater prawn (Macrobrachium rosenbergii) farming. Aquafeed Formulation Beyond 2:17–19Google Scholar
  143. Montero D, Izquierdo M (2010) Welfare and health of fish fed vegetable oils as alternative lipid sources to fish oil. In: Turchini GM, Ng WK, Tocher RD (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis, Boca Raton, pp 439–486CrossRefGoogle Scholar
  144. Montero D, Mathlouthi F, Tort L, Afonso JM, Torrecillas S, Fernandez Vaquero A, Negrin D, Izquierdo MS (2010) Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of proinflammatory cytokines genes in gilthead sea bream Sparus aurata. Fish Shellfish Immunol 29(6):1073–1081Google Scholar
  145. Morales GA, Márquez L, de Rodrigañez MS, Bermúdez L, Robles R, Moyano FJ (2013) Effect of phytase supplementation of a plant-based diet on phosphorus and nitrogen bioavailability in sea bream Sparus aurata. Aquac Nutr.  https://doi.org/10.1111/anu.12063
  146. Mourente G (1996) In vitro metabolism of 14C-polyunsaturated fatty acids in midgut gland and ovary cells from Penaeus kerathurus at the beginning of sexual maturation. Comp Biochem Physiol B: Biochem Mol Biol 115:255–266.  https://doi.org/10.1016/0305-0491(96)00111-3
  147. Mourente G, Good JE, Bell JG (2005) Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E2 and F2α, immune function and effectiveness of a fish oil finishing diet. Aquac Nutr 11:25–40CrossRefGoogle Scholar
  148. Moya-Falcon C, Thomassen M, Jakobsen JV, Ruyter B (2005) Effects of dietary supplementation of rapeseed oil on metabolism of [1-C-14] 18: 1 n-9, [1-C-14] 20: 3n-6, and [1-C-14]20: 4n-3 in Atlantic salmon hepatocytes. Lipids 40:709–717PubMedCrossRefPubMedCentralGoogle Scholar
  149. Nandeesha MC, Gangadhara B, Varghese TJ, Keshavanath P (2000) Growth response and flesh quality of common carp, Cyprinus carpio fed with high levels of nondefatted silkworm pupae. Asian Fish Sci 13:235–242Google Scholar
  150. Negas I, Alexis MN (1995) Partial substitution of fishmeal with soybean meal products and derivatives in diets for the gilthead sea bream (Sparus aurata L.). Aquac Res 27:147–156CrossRefGoogle Scholar
  151. Newton GL, Booram CV, Barker RW, Hale OM (1977) Dried Hermetia illucens larvae meal as a supplement for swine. J Anim Sci 44:395–400CrossRefGoogle Scholar
  152. Ng WK, Liew FL, Ang LP, Wong KW (2001) Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac Res 32:273–280CrossRefGoogle Scholar
  153. Niu J, Tian L-X, Liu Y-J, Yang H-J, Ye C-X, Gao W, Mai K-S (2009) Effect of dietary astaxanthin on growth, survival, and stress tolerance of postlarval shrimp, Litopenaeus vannamei. J World Aquacult Soc 40(6):795–802CrossRefGoogle Scholar
  154. NRC (1993) Nutrient Requirements of Fish. Committee on Animal Nutrition. Board on Agriculture. National Research Council. National Academy Press, Washington, DCGoogle Scholar
  155. NRC (2011) Nutrient Requirements of Fish and Shrimp. Committee on Nutrient Requirements of Fish and Shrimp. Board on Agriculture and Natural Resources. Division on Earth and Life Studies. National Research Council of the National Academies. The National Academies Press, Washington, DC. 376 ppGoogle Scholar
  156. Ogunji JO, Kloas W, Wirth M, Schulz C, Rennert B (2006) Housefly maggot meal (magmeal): an emerging substitute of fishmeal in tilapia diets. Deutscher Tropentag 2006, Conference on International Agricultural Research for Development, Stuttgart-Hohenheim, Germany, 11–13 October 2006, 7 ppGoogle Scholar
  157. Oliva-Teles A (2000) Recent advances in European sea bass and gilthead sea bream nutrition. Aquac Int 8:477–492CrossRefGoogle Scholar
  158. Oliva-Teles A, Gonçalves P (2001) Partial replacement of fishmeal by brewers yeast (Saccharomyces cerevisiae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202:269–278CrossRefGoogle Scholar
  159. Øverland M, Tauson A-H, Shearer K, Skrede A (2010) Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch Anim Nutr 64:171–189PubMedCrossRefPubMedCentralGoogle Scholar
  160. Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A (2013) Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 402–403:1–7CrossRefGoogle Scholar
  161. Özşahinoğlu I, Eroldoğan T, Mumoğullarında P, Dikel S, Engin K, Yılmaz AH, Arslan M, Sirkecioğlu AN (2013) Partial replacement of fish oil with vegetable oils in diets for european seabass (Dicentrarchus labrax): effects on growth performance and fatty acids profile. Turk J Fish Aquat Sci 13:819–825CrossRefGoogle Scholar
  162. Paibulkichakul C, Piyatiratitivorakul S, Kittakoop P, Viyakarn V, Fast AW, Menasveta P (1998) Optimal dietary levels of lecithin and cholesterol for blak tiger prawn P. monodon larvae and postlarvae. Aquaculture 167(1998):273–281CrossRefGoogle Scholar
  163. Palmegiano GB, Gai F, Gasco L, Lembo G, Spedicato MT, Trotta P, Zoccarato I (2009a) Partial replacement of fish meal by T-Iso in gilthead sea bream (Sparus aurata) juveniles diets. Ital J Anim Sci 8:869–871CrossRefGoogle Scholar
  164. Palmegiano GB, Gai F, Gasco L, Lembo G, Spedicato MT, Trotta P, Zoccarato I (2009b) Partial replacement of fish meal by T-Iso in gilthead sea bream (Sparus aurata) juveniles diets. Italian Journal of Animal Science 8: Proceedings of the 18th ASPA Congress, Palermo, June 9–12, 2009Google Scholar
  165. Paripatananont T, Boonyaratpalin M, Pengseng P, Chotipuntu P (2001) Substitution of soy protein concentrate for fishmeal in diets of tiger shrimp Penaeus monodon. Aquac Res 32:369–374CrossRefGoogle Scholar
  166. Pereira TG, Oliva-Teles A (2002) Preliminary evaluation of pea seed meal in diets for gilthead sea bream (Sparus aurata) juveniles. Aquac Res 33:1183–1189Google Scholar
  167. Pereira TG, Oliva-Teles A (2003) Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquac Res 34:1111–1117CrossRefGoogle Scholar
  168. Perera WMK, Carter CG, Houlihan DF (1995) The effect of replacing fishmeal with bacterial single cell protein on the nitrogen balance of rainbow trout (Oncorhynchus mykiss (Walbaum)). Br J Nutr 73:591–603PubMedCrossRefPubMedCentralGoogle Scholar
  169. Peres H, Oliva-Teles A (1999) Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170:337–348CrossRefGoogle Scholar
  170. Peres H, Oliva-Teles A (2009) The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture 296:81–86CrossRefGoogle Scholar
  171. Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G (2017) Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 226:12–20CrossRefGoogle Scholar
  172. Piedad-Pascual F (1984) Status of prawn (Penaeus monodon) feed development in the Philippines. In: Prawn Industry Development in the Philippines: Proceedings of the National Prawn Industry Development Workshop, 10–13 April 1984, Iloilo City, Philippines. Southeast Asian Fisheries Development Center, Aquaculture Department, Tigbauan, pp 75–82Google Scholar
  173. Pratoomyot J, Bendiksen EA, Bell JG, Tocher DR (2010) Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305:124–132CrossRefGoogle Scholar
  174. Rajoka MI, Khan SH, Jabbar MA, Awan MS, Hashmi AS (2006) Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Bioresour Technol 97:1934–1941PubMedCrossRefPubMedCentralGoogle Scholar
  175. Reed L, D’Abramo LR (1989) A standard reference diet for crustacean nutrition research. III. Effects on weight gain and amino acid composition of whole body and tail muscle of juvenile prawns Macrobrachium rosenbergii. J World Aquacult Soc 20:107–113CrossRefGoogle Scholar
  176. Rembiałkowska E (2007) Review quality of plant products from organic agriculture. J Sci Food Agric 87:2757–2762CrossRefGoogle Scholar
  177. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Kroghdal A, Olsen RE, Dimitoglou A et al (2016) Effect of dietary components on the gut microbiota of aquatic animals: the never-ending story? Aquac Nutr 22:219–282CrossRefGoogle Scholar
  178. Rodrigues PM, Silva TS, Dias J, Jessen F (2012) Proteomics in aquaculture: applications and trends. J Proteome 3:4325–4345CrossRefGoogle Scholar
  179. Rodrigues PM, Martin SAM, Silva TS, Boonanuntanasarn S, Schrama D, Moreira M, Raposo C (2018) Proteomics in fish and aquaculture research. Chapter. In: de Almeida AM et al (eds) Proteomics in domestic animals: from farm to systems biology. Springer, Cham.  https://doi.org/10.1007/978-3-319-69682-9_16 CrossRefGoogle Scholar
  180. Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T (2011) Bacteria grown on natural gas prevent soybean meal-induced enteritis in Atlantic salmon. J Nutr 141:124–130PubMedCrossRefPubMedCentralGoogle Scholar
  181. Rumbos OH, Karapanagiotidis IT, Mente E, Athanassiou CG (2018) The lesser mealworm Alphitobius diaperinus: a noxious pest or a promising nutrient source? Rev Aquac. https://doi.org/10.1111/raq.12300
  182. Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9(3):e91853.  https://doi.org/10.1371/journal.pone.0091853 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Ruyter B, Thomassen M (1999) Metabolism of n-3 and n-6 fatty acids in Atlantic salmon liver: stimulation by essential fatty acid deficiency. Lipids 34:1167–1176Google Scholar
  184. Ruyter B, Røsjø C, Måsøval K, Einen O, Thomassen MS (2000a) Influence of dietary n-3 fatty acids on the desaturation and elongation of [1-14C] 18:2 n-6 and [1-14C] 18:3 n-3 in Atlantic salmon hepatocytes. Fish Physiol Biochem 23:151–158CrossRefGoogle Scholar
  185. Ruyter B, Røsjø C, Einen O, Thomassen MS (2000b) Essential fatty acids in Atlantic Salmon: effects of increasing dietary doses of n-6 and n-3 fatty acids on growth, survival and fatty acid composition of liver, blood and carcass. Aquac Nutr 6:119–127CrossRefGoogle Scholar
  186. Ruyter B, Røsjø C, Einen O, Thomassen MS (2000c) Essential fatty acids in Atlantic Salmon: time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 polyunsaturated fatty acids. Aquac Nutr 6:109–117CrossRefGoogle Scholar
  187. Ruyter B, Røsjø C, Grisdale-Helland B, Rosenlund G, Obach A, Thomassen MS (2003) Influence of temperature and high dietary linoleic acid content on the elongation and desaturation of polyunsaturated fatty acids in Atlantic salmon hepatocytes. Lipids 38:833–839PubMedCrossRefPubMedCentralGoogle Scholar
  188. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400PubMedCrossRefPubMedCentralGoogle Scholar
  189. Sahu NP (2004) Nutrient requirement of Indian fishes of commercial importance: present status and future need. Indian Soc Fish Prof Newsl ‘Indofish’ VI(1–2):7–15Google Scholar
  190. Santigosa E, Garcia-Meilan I, Maria Valentin J, Navarro I, Perez-Sanchez J, Angeles Gallardo M (2011a) Plant oils’ inclusion in high fish meal-substituted diets: effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.). Aquac Res 42:962–974CrossRefGoogle Scholar
  191. Santigosa E, Garcia-Meilan I, Valentin JM, Perez-Sanchez J, Medale F, Kaushik S, Gallardo MA (2011b) Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 317:146–154CrossRefGoogle Scholar
  192. Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver, Hardy (eds) Fish nutrition. Academic Press, Elsevier Science, San Diego, pp 181–257Google Scholar
  193. Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquacult Soc 42:34–45.  https://doi.org/10.1111/j.1749-7345.2010.00441.x CrossRefGoogle Scholar
  194. Sitjà-Bobadilla A, Peña-Llopis S, Gómez-Requenia P, Médaleb F, Kaushikb S, Pérez-Sánchez J (2005) Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 249:387–400CrossRefGoogle Scholar
  195. Skrede A, Mydland LT, Ahlstrom O, Reitan KI, Gislerod HR (2011) Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci 20:131–142CrossRefGoogle Scholar
  196. Smith DM, Tabrett SJ, Braclay MC (2001) Cholesterol requirement of subadult black tiger shrimp Penaeus monodon (Fabricius). Aquac Res 32(Suppl. 1):399–405CrossRefGoogle Scholar
  197. Soil Association (2009) Organic market report 2009. Retrieved on 15/07/2009 from http://www.soilassociation.org/Businesses/Marketinformation/tabid/116/Default.aspx
  198. Sørensen M, Berge GM, Thomassen M, Ruyter B, Hatlen B, Ytrestøyl T, Aas TS, Åsgård T (2011) Today’s and tomorrow’s feed ingredients in Norwegian aquaculture. Nofima Report 52/2011, 68 ppGoogle Scholar
  199. Sprague MJR, Dick JR, Tocher DR (2016) Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci Rep 6:21892.  https://doi.org/10.1038/srep21892 CrossRefPubMedPubMedCentralGoogle Scholar
  200. St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in Omega-3 fatty acids. J World Aquacult Soc 38:309–313CrossRefGoogle Scholar
  201. St-Hilaire S, Shepard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J World Aquacult Soc 38:59–67CrossRefGoogle Scholar
  202. Tacon AGJ (2002) Thematic review of feeds and feed management practices in shrimp aquaculture. Report prepared under the World Bank, NACA, WWF and FAOGoogle Scholar
  203. Tacon AGJ, Metian M (2015) Feed matters: satisfying the feed demand of aquaculture. Rev Fish Sci Aquac 23(1):1–10.  https://doi.org/10.1080/23308249.2014.987209 CrossRefGoogle Scholar
  204. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol.  https://doi.org/10.1111/jam.13415
  205. Thebault H, Alliot E, Pastoureaud A (1985) Quantitative methionine requirement of juvenile sea-bass (Dicentrarchus labrax). Aquaculture 50:75–87CrossRefGoogle Scholar
  206. Thomassen MS, Røsjø C (1989) Different fats in feed for salmon. Influence on sensory parameters, growth rate and fatty acids in muscle and heart. Aquaculture 79:129–135CrossRefGoogle Scholar
  207. Tibaldi E, Kaushik SJ (2005) Amino acid requirements of Mediterranean fish species. In: Montero D, Basurco B, Nengas I, Alexis M, Izquierdo M (eds) Mediterranean fish nutrition, Cahiers Options Méditerranéennes; n. 63. CIHEAM, 2005, Zaragoza, pp 59–65Google Scholar
  208. Tiwari JB, Sahu NP (1999) Possible use of soyaphospholipid as a source of lipid in the post larval diet of Macrobrachium rosenbergii. J Aquac Tropics 14:37–46Google Scholar
  209. Tocher, DR; Bell, JG; Dick, JR, Henderson, RJ, McGhee, F., Michell, D., Morris, PC., 2000. Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation and the effects of dietary linseed and rapeseed oils. Fish Physiol Biochem 23(1) 59–73.Google Scholar
  210. Torrissen OJ, Christiansen R (1995) Requirements for carotenoids in fish. Appl Ichtyol 11:225–230CrossRefGoogle Scholar
  211. Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie Ø, Sargent JR (2005) Tailoring of Atlantic salmon (Salmo salar L) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agric Food Chem 53:10166–10178PubMedCrossRefPubMedCentralGoogle Scholar
  212. Torstensen BE, Espe M, Sanden M, Stubhaug I, Waagbø R, Hemre GI, Fontanillas R, Nordgarden U, Hevrøy EM, Olsvik P, Berntssen MHG (2008) Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture 285:193–200CrossRefGoogle Scholar
  213. Torstensen BE, Ruyter B, Sissener N, Østbye TK, Waagbø R, Jørgensen SM, Ytteborg E, Rud I, Liland N, Mørkøre T, Dessen, JE (2013) “Fett for fiskehelse” Utredning: Effekter av endret fettsyresammensetning i fôr til laks relatert til fiskens helse, velferdog robusthet. Nofima/NIFES/FHF. http://www.nofima.no/filearchive/900889-sluttrapport-fett-for-fiskehelse-godkjent-28062013.pdf
  214. Tulli F, Zittelli GC, Giorgi G, Poli BM, Tibaldi E, Tredici MR (2012) Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European Sea Bass juveniles fed organic diets. J Aquat Food Prod Technol 21:188–197CrossRefGoogle Scholar
  215. Van Huis A, Oonincx DGAB (2017) The environmental sustainability of insects as food and feed. A review. Agron Sustain Dev 37:43.  https://doi.org/10.1007/s13593-017-0452-8 CrossRefGoogle Scholar
  216. Velasco M, Lawrence AL, Castille FL, Obaldo LG (2000) Dietary protein requirement for Litopenaeus vannamei. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19–22 Noviembre, 2000. MéridaGoogle Scholar
  217. Weir G (1998) The use of proteins in aquaculture feeds. Biotechnology in the feed industry (1998) 605–611. UCAAB L3260Google Scholar
  218. Wilson RP (2002) Amino acids and proteins. In: Hardy RW, Halver J (eds) Fish nutrition. Academic, Amsterdam, pp 143–179Google Scholar
  219. Wouters R, Lavens P, Nieto J, Sorgeloos P (2001) Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture 202:1–21CrossRefGoogle Scholar
  220. Yang Y, Wang Y, Lu Y, Li Q (2011) Effect of replacing fish meal with soybean meal on growth, feed utilization and nitrogen and phosphorus excretion on rainbow trout (Oncorhynchus mykiss). Aquac Int 19:405–419CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Mente
    • 1
    Email author
  • Alfred Jokumsen
    • 2
  • Chris G. Carter
    • 3
  • Efi Antonopoulou
    • 4
  • Albert G. J. Tacon
    • 5
  1. 1.Department of Ichthyology and Aquatic Environment, School of Agricultural SciencesUniversity of ThessalyVolosGreece
  2. 2.National Institute of Aquatic Resources, (DTU Aqua)Technical University of Denmark, Nordsøen ForskerparkHirtshalsDenmark
  3. 3.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  4. 4.Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of SciencesAristotle University of Thessaloniki, University CampusThessalonikiGreece
  5. 5.Aquatic Farms LtdKaneoheUSA

Personalised recommendations