Advertisement

Force Field Development and Nanoreactor Chemistry

  • Lee-Ping WangEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 28)

Abstract

The application of theory and computation to understand reactivity at high pressures is beset by several challenges: (1) the nontrivial changes in electronic structure that take place during the reaction, (2) the many possible initial configurations of reacting species, and (3) the simulation timescales needed for reaction events to occur. In this chapter, we will discuss two methods for meeting these challenges. The development of accurate molecular mechanics force fields is needed to sample initial configurations of reactants. This chapter provides a perspective on the functional forms and parameterization strategies of modern force fields. In particular, we highlight the ForceBalance parameterization method for optimizing force fields systematically and reproducibly using a free and open-source code. The ab initio nanoreactor is a new simulation method for rapidly discovering new reaction pathways from first-principles molecular dynamics. The main components of the nanoreactor approach include an external time-dependent potential that induces high-velocity molecular collisions, a trajectory analysis and visualization tool for identifying and extracting individual reaction events, and a reaction path optimization workflow for estimating the reaction energies and barrier heights from a reaction event.

References

  1. 1.
    Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123(23).  https://doi.org/10.1063/1.2121687
  2. 2.
    Akin-Ojo O, Song Y, Wang F (2008) Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. J Chem Phys 129(6).  https://doi.org/10.1063/1.2965882
  3. 3.
    Albaugh A, Demerdash O, Head-Gordon T (2015) An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction. J Chem Phys 143(17):174104.  https://doi.org/10.1063/1.4933375CrossRefPubMedGoogle Scholar
  4. 4.
    Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics—the MM3 force-field for hydrocarbons. 1. J Am Chem Soc 111(23):8551–8566.  https://doi.org/10.1021/ja00205a001
  5. 5.
    Applequist J, Carl JR, Fung KK (1972) Atom dipole interaction model for molecular polarizability—application to polyatomic-molecules and determination of atom polarizabilities. J Am Chem Soc 94(9):2952.  https://doi.org/10.1021/ja00764a010
  6. 6.
    Bao JL, Truhlar DG (2017) Variational transition state theory: theoretical framework and recent developments. Chem Soc Rev 46(24):7548–7596.  https://doi.org/10.1039/C7CS00602KCrossRefPubMedGoogle Scholar
  7. 7.
    Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8(4):1409–1414.  https://doi.org/10.1021/ct2007814CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Behler J (2017) First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed 56(42):12828–12840.  https://doi.org/10.1002/anie.201703114CrossRefGoogle Scholar
  9. 9.
    Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271.  https://doi.org/10.1021/j100308a038CrossRefGoogle Scholar
  10. 10.
    Bergeler M, Simm GN, Proppe J, Reiher M (2015) Heuristics-guided exploration of reaction mechanisms. J Chem Theory Comput 11(12):5712–5722.  https://doi.org/10.1021/acs.jctc.5b00866CrossRefPubMedGoogle Scholar
  11. 11.
    Betz RM, Walker RC (2015) Paramfit: automated optimization of force field parameters for molecular dynamics simulations. J Comput Chem 36(2):79–87.  https://doi.org/10.1002/jcc.23775CrossRefPubMedGoogle Scholar
  12. 12.
    Bofill JM (1994) Updated Hessian matrix and the restricted step method for locating transition structures. J Comput Chem 15(1):1–11.  https://doi.org/10.1002/jcc.540150102CrossRefGoogle Scholar
  13. 13.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318.  https://doi.org/10.1146/annurev.physchem.53.082301.113146CrossRefPubMedGoogle Scholar
  14. 14.
    Bourasseau E, Haboudou M, Boutin A, Fuchs AH, Ungerer P (2003) New optimization method for intermolecular potentials: optimization of a new anisotropic united atoms potential for olefins: prediction of equilibrium properties. J Chem Phys 118(7):3020–3034.  https://doi.org/10.1063/1.1537245CrossRefGoogle Scholar
  15. 15.
    Brommer P, Gahler F (2007) Potfit: effective potentials from ab initio data. Modell Simul Mater Sci Eng 15(3):295–304.  https://doi.org/10.1088/0965-0393/15/3/008CrossRefGoogle Scholar
  16. 16.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217.  https://doi.org/10.1002/jcc.540040211CrossRefGoogle Scholar
  17. 17.
    Caleman C, van Maaren PJ, Hong MY, Hub JS, Costa LT, van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8(1):61–74.  https://doi.org/10.1021/ct200731vCrossRefPubMedGoogle Scholar
  18. 18.
    Cao JS, Voth GA (1994) The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 2. Dynamical properties. J Chem Phys 100(7):5106–5117.  https://doi.org/10.1063/1.467176
  19. 19.
    Chang YT, Miller WH (1990) An empirical valence bond model for constructing global potential-energy surfaces for chemical-reactions of polyatomic molecular-systems. J Phys Chem 94(15):5884–5888.  https://doi.org/10.1021/j100378a052CrossRefGoogle Scholar
  20. 20.
    Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053.  https://doi.org/10.1021/jp709896wCrossRefPubMedGoogle Scholar
  21. 21.
    Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller K-R (2017) Machine learning of accurate energy-conserving molecular force fields. Sci Adv 3(5)Google Scholar
  22. 22.
    Cisneros GA, Wikfeldt KT, Ojamae L, Lu JB, Xu Y, Torabifard H, Bartok AP, Csanyi G, Molinero V, Paesani F (2016) Modeling molecular interactions in water: from pairwise to many body potential energy functions. Chem Rev 116(13):7501–7528.  https://doi.org/10.1021/acs.chemrev.5b00644CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117(19):5179–5197.  https://doi.org/10.1021/ja00124a002CrossRefGoogle Scholar
  24. 24.
    Craig IR, Manolopoulos DE (2004) Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J Chem Phys 121(8):3368–3373.  https://doi.org/10.1063/1.1777575CrossRefPubMedGoogle Scholar
  25. 25.
    Dang LX, Chang TM (1997) Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials. J Chem Phys 106(19):8149–8159.  https://doi.org/10.1063/1.473820CrossRefGoogle Scholar
  26. 26.
    Day TJF, Soudackov AV, Cuma M, Schmitt UW, Voth GA (2002) A second generation multistate empirical valence bond model for proton transport in aqueous systems. J Chem Phys 117(12):5839–5849.  https://doi.org/10.1063/1.1497157CrossRefGoogle Scholar
  27. 27.
    Dewyer AL, Zimmerman PM (2017) Finding reaction mechanisms, intuitive or otherwise. Org Biomol Chem 15(3):501–504.  https://doi.org/10.1039/C6OB02183BCrossRefPubMedGoogle Scholar
  28. 28.
    Dykstra CE (1993) Electrostatic interaction potentials in molecular-force fields. Chem Rev 93(7):2339–2353.  https://doi.org/10.1021/cr00023a001CrossRefGoogle Scholar
  29. 29.
    Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations—the force-matching method. Europhys Lett 26(8):583–588.  https://doi.org/10.1209/0295-5075/26/8/005CrossRefGoogle Scholar
  30. 30.
    Faller R, Schmitz H, Biermann O, Muller-Plathe F (1999) Automatic parameterization of force fields for liquids by simplex optimization. J Comput Chem 20(10):1009–1017.  https://doi.org/10.1002/(sici)1096-987x(19990730)20:10%3c1009:aid-jcc3%3e3.0.co;2-cCrossRefGoogle Scholar
  31. 31.
    Fatima S, Christopher R (2018) The CHARMM36 force field for lipids can be used with more accurate water models.  https://doi.org/10.26434/chemrxiv.6137474.v1
  32. 32.
    Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition-metals. Philos Mag Phys Condens Matter Struct Defects Mech Prop 50(1):45–55.  https://doi.org/10.1080/01418618408244210CrossRefGoogle Scholar
  33. 33.
    Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14(12):363–368.  https://doi.org/10.1021/ar00072a001CrossRefGoogle Scholar
  34. 34.
    Gao M, Lyalin A, Maeda S, Taketsugu T (2014) Application of automated reaction path search methods to a systematic search of single-bond activation pathways catalyzed by small metal clusters: a case study on H-H activation by gold. J Chem Theory Comput 10(4):1623–1630.  https://doi.org/10.1021/ct500068bCrossRefPubMedGoogle Scholar
  35. 35.
    Goldman N, Reed EJ, Fried LE, William Kuo IF, Maiti A (2010) Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat Chem 2(11):949–954.  https://doi.org/10.1038/nchem.827CrossRefPubMedGoogle Scholar
  36. 36.
    Habershon S (2016) Automated prediction of catalytic mechanism and rate law using graph-based reaction path sampling. J Chem Theory Comput 12(4):1786–1798.  https://doi.org/10.1021/acs.jctc.6b00005CrossRefPubMedGoogle Scholar
  37. 37.
    Habershon S, Manolopoulos DE, Markland TE, Miller TF (2013) Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. In: Johnson MA, Martinez TJ (eds) Annual review of physical chemistry, vol 64, pp 387–413.  https://doi.org/10.1146/annurev-physchem-040412-110122
  38. 38.
    Hermans J, Berendsen HJC, Vangunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23(8):1513–1518.  https://doi.org/10.1002/bip.360230807CrossRefGoogle Scholar
  39. 39.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120(20):9665–9678.  https://doi.org/10.1063/1.1683075CrossRefPubMedGoogle Scholar
  40. 40.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Struct Funct Bioinform 65(3):712–725.  https://doi.org/10.1002/prot.21123CrossRefGoogle Scholar
  41. 41.
    Hulsmann M, Kirschner KN, Kramer A, Heinrich DD, Kramer-Fuhrmann O, Reith D (2016) Optimizing molecular models through force-field parameterization via the efficient combination of modular program packages. In: Snurr RQ, Adjiman CS, Kofke DA (eds) Foundations of molecular modeling and simulation. Molecular modeling and simulation-applications and perspectives. Springer, Singapore, pp 53–77.  https://doi.org/10.1007/978-981-10-1128-3_4
  42. 42.
    Jensen BD, Bandyopadhyay A, Wise KE, Odegard GM (2012) Parametric study of ReaxFF simulation parameters for molecular dynamics modeling of reactive carbon gases. J Chem Theory Comput 8(9):3003–3008.  https://doi.org/10.1021/ct300491dCrossRefPubMedGoogle Scholar
  43. 43.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935.  https://doi.org/10.1063/1.445869CrossRefGoogle Scholar
  44. 44.
    Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236.  https://doi.org/10.1021/ja9621760CrossRefGoogle Scholar
  45. 45.
    Kokkila Schumacher SIL, Hohenstein EG, Parrish RM, Wang LP, Martinez TJ (2015) Tensor hypercontraction second-order Moller-Plesset perturbation theory: grid optimization and reaction energies. J Chem Theory Comput 11(7):3042–3052.  https://doi.org/10.1021/acs.jctc.5b00272CrossRefGoogle Scholar
  46. 46.
    Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562–12566.  https://doi.org/10.1073/pnas.202427399CrossRefPubMedGoogle Scholar
  47. 47.
    Lamoureux G, MacKerell AD, Bt Roux (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119(10):5185–5197.  https://doi.org/10.1063/1.1598191CrossRefGoogle Scholar
  48. 48.
    Laury ML, Wang LP, Pande VS, Head-Gordon T, Ponder JW (2015) Revised parameters for the AMOEBA polarizable atomic multipole water model. J Phys Chem B 119(29):9423–9437.  https://doi.org/10.1021/jp510896nCrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li Y, Abberton BC, Kroger M, Liu WK (2013) Challenges in multiscale modeling of polymer dynamics. Polymers 5(2):751–832.  https://doi.org/10.3390/polym5020751CrossRefGoogle Scholar
  50. 50.
    Li YP, Li JC, Wang F (2013) Liquid-liquid transition in supercooled water suggested by microsecond simulations. Proc Natl Acad Sci U S A 110(30):12209–12212.  https://doi.org/10.1073/pnas.1309042110CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liang T, Shin YK, Cheng YT, Yilmaz DE, Vishnu KG, Verners O, Zou CY, Phillpot SR, Sinnott SB, van Duin ACT (2013) Reactive potentials for advanced atomistic simulations. In: Clarke DR (ed) Annual review of materials research, vol 43, pp 109–129.  https://doi.org/10.1146/annurev-matsci-071312-121610
  52. 52.
    Lifson S, Warshel A (1968) Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and N-alkane molecules. J Chem Phys 49(11):5116.  https://doi.org/10.1063/1.1670007
  53. 53.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958.  https://doi.org/10.1002/prot.22711CrossRefGoogle Scholar
  54. 54.
    Mackerell AD, Wiorkiewiczkuczera J, Karplus M (1995) An all-atom empirical energy function for the simulation of nucleic-acids. J Am Chem Soc 117(48):11946–11975.  https://doi.org/10.1021/ja00153a017CrossRefGoogle Scholar
  55. 55.
    Maeda S, Harabuchi Y, Takagi M, Taketsugu T, Morokuma K (2016) Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chem Rec 16(5):2232–2248.  https://doi.org/10.1002/tcr.201600043CrossRefPubMedGoogle Scholar
  56. 56.
    Mayo SL, Olafson BD, Goddard WA (1990) DREIDING—a generic force-field for molecular simulations. J Phys Chem 94(26):8897–8909.  https://doi.org/10.1021/j100389a010CrossRefGoogle Scholar
  57. 57.
    McKiernan KA, Wang L-P, Pande VS (2016) Training and validation of a liquid-crystalline phospholipid bilayer force field. J Chem Theory Comput 12(12):5960–5967.  https://doi.org/10.1021/acs.jctc.6b00801CrossRefPubMedGoogle Scholar
  58. 58.
    Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974) Intermolecular potentials from crystal data. 3. Determination of empirical potentials and application to packing configurations and lattice energies in crystals of hydrocarbons, carboxylic-acids, amines, and amides. J Phys Chem 78(16):1595–1620.  https://doi.org/10.1021/j100609a005
  59. 59.
    Mu XJ, Wang QT, Wang LP, Fried SD, Piquemal JP, Dalby KN, Ren PY (2014) Modeling organochlorine compounds and the sigma-hole effect using a polarizable multipole force field. J Phys Chem B 118(24):6456–6465.  https://doi.org/10.1021/jp411671aCrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mullen RG, Shea J-E, Peters B (2015) Easy transition path sampling methods: flexible-length aimless shooting and permutation shooting. J Chem Theory Comput 11(6):2421–2428.  https://doi.org/10.1021/acs.jctc.5b00032CrossRefPubMedGoogle Scholar
  61. 61.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine from the reaction of CH2[double bond, length as m-dash]NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys Chem Chem Phys 18(1):375–381.  https://doi.org/10.1039/C5CP04987CCrossRefPubMedGoogle Scholar
  62. 62.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine from the reaction of CH2NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys Chem Chem Phys 18(1):375–381.  https://doi.org/10.1039/C5CP04987CCrossRefPubMedGoogle Scholar
  63. 63.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2. Phys Chem Chem Phys 18(30):20109–20117.  https://doi.org/10.1039/C5CP07124KCrossRefPubMedGoogle Scholar
  64. 64.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2NH, CO2 and H2. Phys Chem Chem Phys 18(30):20109–20117.  https://doi.org/10.1039/C5CP07124KCrossRefPubMedGoogle Scholar
  65. 65.
    Paul W, Smith GD (2004) Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory. Rep Prog Phys 67(7):1117–1185.  https://doi.org/10.1088/0034-4885/67/7/r03CrossRefGoogle Scholar
  66. 66.
    Pendleton IM, Perez-Temprano MH, Sanford MS, Zimmerman PM (2016) Experimental and computational assessment of reactivity and mechanism in C(sp(3))-N bond-forming reductive elimination from palladium(IV). J Am Chem Soc 138(18):6049–6060.  https://doi.org/10.1021/jacs.6b02714CrossRefPubMedGoogle Scholar
  67. 67.
    Peters B, Trout BL (2006) Obtaining reaction coordinates by likelihood maximization. J Chem Phys 125(5):10.  https://doi.org/10.1063/1.2234477CrossRefGoogle Scholar
  68. 68.
    Pietrucci F, Andreoni W (2011) Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale. Phys Rev Lett 107(8):085504.  https://doi.org/10.1103/PhysRevLett.107.085504CrossRefPubMedGoogle Scholar
  69. 69.
    Ponder JW, Case DA (2003) Force fields for protein simulations. Protein Simul 66:27Google Scholar
  70. 70.
    Ponder JW, Wu CJ, Ren PY, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114(8):2549–2564.  https://doi.org/10.1021/jp910674dCrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Qi R, Wang LP, Wang QT, Pande VS, Ren PY (2015) United polarizable multipole water model for molecular mechanics simulation. J Chem Phys 143(1):12.  https://doi.org/10.1063/1.4923338CrossRefGoogle Scholar
  72. 72.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, A full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114(25):10024–10035.  https://doi.org/10.1021/ja00051a040CrossRefGoogle Scholar
  73. 73.
    Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95(8):3358–3363.  https://doi.org/10.1021/j100161a070CrossRefGoogle Scholar
  74. 74.
    Ren PY, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947.  https://doi.org/10.1021/jp027815+CrossRefGoogle Scholar
  75. 75.
    Ren PY, Wu CJ, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7(10):3143–3161.  https://doi.org/10.1021/ct200304dCrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101(7):6141–6156.  https://doi.org/10.1063/1.468398CrossRefGoogle Scholar
  77. 77.
    Rosso L, Mináry P, Zhu Z, Tuckerman ME (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Chem Phys 116(11):4389–4402.  https://doi.org/10.1063/1.1448491CrossRefGoogle Scholar
  78. 78.
    Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci U S A 111(38):13768–13773.  https://doi.org/10.1073/pnas.1402894111CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci 111(38):13768–13773.  https://doi.org/10.1073/pnas.1402894111CrossRefPubMedGoogle Scholar
  80. 80.
    Schmitt UW, Voth GA (1998) Multistate empirical valence bond model for proton transport in water. J Phys Chem B 102(29):5547–5551.  https://doi.org/10.1021/jp9818131CrossRefGoogle Scholar
  81. 81.
    Sheng HW, Kramer MJ, Cadien A, Fujita T, Chen MW (2011) Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys Rev B 83(13):20.  https://doi.org/10.1103/PhysRevB.83.134118CrossRefGoogle Scholar
  82. 82.
    Sheppard D, Terrell R, Henkelman G (2008) Optimization methods for finding minimum energy paths. J Chem Phys 128(13).  https://doi.org/10.1063/1.2841941
  83. 83.
    Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82(16):3308–3311.  https://doi.org/10.1103/PhysRevLett.82.3308CrossRefGoogle Scholar
  84. 84.
    Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8(4):3192–3203.  https://doi.org/10.1039/c6sc05720aCrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Stillinger FH, Weber TA (1985) Computer-simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262–5271.  https://doi.org/10.1103/PhysRevB.31.5262CrossRefGoogle Scholar
  86. 86.
    Suleimanov YV, Green WH (2015) Automated discovery of elementary chemical reaction steps using freezing string and Berny optimization methods. J Chem Theory Comput 11(9):4248–4259.  https://doi.org/10.1021/acs.jctc.5b00407CrossRefPubMedGoogle Scholar
  87. 87.
    Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364.  https://doi.org/10.1021/jp980939vCrossRefGoogle Scholar
  88. 88.
    Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous-carbon. Phys Rev Lett 61(25):2879–2882.  https://doi.org/10.1103/PhysRevLett.61.2879CrossRefPubMedGoogle Scholar
  89. 89.
    Ufimtsev IS, Martinez TJ (2009) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5(10):2619–2628.  https://doi.org/10.1021/ct9003004
  90. 90.
    Van Belle D, Wodak SJ (1995) Extended Lagrangian formalism applied to temperature control and electronic polarization effects in molecular dynamics simulations. Comput Phys Commun 91(1):253–262.  https://doi.org/10.1016/0010-4655(95)00051-GCrossRefGoogle Scholar
  91. 91.
    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409.  https://doi.org/10.1021/jp004368uCrossRefGoogle Scholar
  92. 92.
    van Erp TS (2007) Reaction rate calculation by parallel path swapping. Phys Rev Lett 98(26):268301.  https://doi.org/10.1103/PhysRevLett.98.268301CrossRefPubMedGoogle Scholar
  93. 93.
    van Erp TS, Moroni D, Bolhuis PG (2003) A novel path sampling method for the calculation of rate constants. J Chem Phys 118(17):7762–7774.  https://doi.org/10.1063/1.1562614CrossRefGoogle Scholar
  94. 94.
    Varela JA, Vazquez SA, Martinez-Nunez E (2017) An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis. Chem Sci 8(5):3843–3851.  https://doi.org/10.1039/C7SC00549KCrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535.  https://doi.org/10.1063/1.1461829CrossRefGoogle Scholar
  96. 96.
    Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260.  https://doi.org/10.1016/j.jmgm.2005.12.005CrossRefPubMedGoogle Scholar
  97. 97.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174.  https://doi.org/10.1002/jcc.20035CrossRefPubMedGoogle Scholar
  98. 98.
    Wang L-P, McKiernan KA, Gomes J, Beauchamp KA, Head-Gordon T, Rice JE, Swope WC, Martínez TJ, Pande VS (2017) Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J Phys Chem B 121(16):4023–4039.  https://doi.org/10.1021/acs.jpcb.7b02320CrossRefPubMedGoogle Scholar
  99. 99.
    Wang L-P, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ (2014) Discovering chemistry with an ab initio nanoreactor. Nat Chem 6(12):1044–1048.  https://doi.org/10.1038/nchem.2099CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wang LP, Chen JH, Van Voorhis T (2013) Systematic parametrization of polarizable force fields from quantum chemistry data. J Chem Theory Comput 9(1):452–460.  https://doi.org/10.1021/ct300826tCrossRefPubMedGoogle Scholar
  101. 101.
    Wang LP, Head-Gordon T, Ponder JW, Ren P, Chodera JD, Eastman PK, Martinez TJ, Pande VS (2013) Systematic improvement of a classical molecular model of water. J Phys Chem B 117(34):9956–9972.  https://doi.org/10.1021/jp403802cCrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wang LP, Martinez TJ, Pande VS (2014) Building force fields: an automatic, systematic, and reproducible approach. J Phys Chem Lett 5(11):1885–1891.  https://doi.org/10.1021/jz500737mCrossRefPubMedGoogle Scholar
  103. 103.
    Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Biophys Biomol Struct 32:425–443.  https://doi.org/10.1146/annurev.biophys.32.110601.141807CrossRefPubMedGoogle Scholar
  104. 104.
    Warshel A, Weiss RM (1980) An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 102(20):6218–6226.  https://doi.org/10.1021/ja00540a008CrossRefGoogle Scholar
  105. 105.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force-field for molecular mechanical simulation of nucleic-acids and proteins. J Am Chem Soc 106(3):765–784.  https://doi.org/10.1021/ja00315a051CrossRefGoogle Scholar
  106. 106.
    Wood MA, Cherukara MJ, Antillon E, Strachan A (2017) Molecular dynamics simulations of shock loading of materials: a review and tutorial. In: Parrill AL, Lipkowitz KB (eds) Reviews in computational chemistry, vol 30, pp 43–92Google Scholar
  107. 107.
    Xie L, Zhao Q, Jensen KF, Kulik HJ (2016) Direct observation of early-stage quantum dot growth mechanisms with high-temperature ab initio molecular dynamics. J Phys Chem C 120(4):2472–2483.  https://doi.org/10.1021/acs.jpcc.5b12091CrossRefGoogle Scholar
  108. 108.
    Yu H, Hansson T, van Gunsteren WF (2002) Development of a simple, self-consistent polarizable model for liquid water. J Chem Phys 118(1):221–234.  https://doi.org/10.1063/1.1523915CrossRefGoogle Scholar
  109. 109.
    Zhang H, Yin C, Jiang Y, van der Spoel D (2018a) Force field benchmark of amino acids: I. Hydration and diffusion in different water models. J Chem Inf Model.  https://doi.org/10.1021/acs.jcim.8b00026
  110. 110.
    Zhang L, Han J, Wang H, Car R, EW (2018b) Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett 120(14):143001Google Scholar
  111. 111.
    Zheng L, Chen M, Yang W (2008) Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proc Natl Acad Sci 105(51):20227–20232.  https://doi.org/10.1073/pnas.0810631106CrossRefPubMedGoogle Scholar
  112. 112.
    Zubarev DY, Rappoport D, Aspuru-Guzik A (2015) Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle. Sci Rep 5:8009.  https://doi.org/10.1038/srep08009CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California at DavisDavisUSA

Personalised recommendations