Advertisement

Current Design with Minimum Error in Transcranial Direct Current Stimulation

  • Jing Qin
  • Yushan Wang
  • Wentai Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

As a non-invasive brain stimulation technology, transcanial direct current stimulation (tDCS) has been recently attracting more and more attention in research and clinic applications due to its convenient implementation and modulation of the brain functionality. In this paper, we propose a novel multi-electrode tDCS current configuration model that minimizes the total error under the safety constraints. After rewriting the model as a linearly constrained minimization problem, we develop an efficient numerical algorithm based on the alternating direction method of multipliers (ADMM). Numerical experiments have shown the great potential of the proposed method in terms of accuracy and focality.

Keywords

transcranial Direct Current Stimulation (tDCS) Human head model Multi-electrode stimulation Safety constraints Alternating Direction Method of Multipliers (ADMM) 

Notes

Acknowledgments

The research of Jing Qin is supported by the NSF grant DMS-1818374.

References

  1. 1.
    Auvichayapat, N., et al.: Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul.: Basic Transl. Clin. Res. Neuromodul. 6(4), 696–700 (2013)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)zbMATHGoogle Scholar
  3. 3.
    Brunoni, A.R., et al.: The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. São Paulo Med. J. 133(3), 252–263 (2015)CrossRefGoogle Scholar
  4. 4.
    Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(l_1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dmochowski, J.P., Datta, A., Bikson, M., Su, Y., Parra, L.C.: Optimized multi-electrode stimulation increases focality and intensity at target. J. Neural Eng. 8(4), 046011 (2011)CrossRefGoogle Scholar
  6. 6.
    Fregni, F., et al.: Noninvasive cortical stimulation with transcranial direct current stimulation in parkinson’s disease. Mov. Disord. 21(10), 1693–1702 (2006)CrossRefGoogle Scholar
  7. 7.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)zbMATHCrossRefGoogle Scholar
  8. 8.
    Glowinski, R., Marrocco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par, penalisation-dualité, d’une classe de problems de dirichlet non lineares. Revue Française d’Automatique, Informatique, et Recherche Opéationelle 9, 41–76 (1975)zbMATHCrossRefGoogle Scholar
  9. 9.
    Guler, S.: Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J. Neural Eng. 13(3), 036020 (2016)CrossRefGoogle Scholar
  10. 10.
    Li, F., Osher, S., Qin, J., Yan, M.: A multiphase image segmentation based on fuzzy membership functions and L1-norm fidelity. J. Sci. Comput. 69(1), 82–106 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    Ruffini, G., Fox, M.D., Ripolles, O., Miranda, P.C., Pascual-Leone, A.: Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage 89, 216–225 (2014)CrossRefGoogle Scholar
  13. 13.
    Sadleir, R., Vannorsdall, T.D., Schretlen, D.J., Gordon, B.: Target optimization in transcranial direct current stimulation. Front. Psychiatry 3, 90 (2012)Google Scholar
  14. 14.
    Woods, A.J., et al.: A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127(2), 1031–1048 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMontana State UniversityBozemanUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations