Advertisement

ADEPTNESS: Alzheimer’s Disease Patient Management System Using Pervasive Sensors - Early Prototype and Preliminary Results

  • Tajim Md. Niamat Ullah Akhund
  • Md. Julkar Nayeen Mahi
  • A. N. M. Hasnat Tanvir
  • Mufti Mahmud
  • M. Shamim Kaiser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Alzheimer’s is a catastrophic neuro-degenerative state in the elderly which reduces thinking skills and thereby hamper daily activity. Thus the management may be helpful for people with such condition. This work presents sensor based management system for Alzheimer’s patient. The main objective of this work is to report an early prototype of an eventual wearable system that can assist in managing the health of such patients and notify the caregivers in case of necessity. A brief case study is presented which showed that the proposed prototype can detect agitated and clam states of patients. As the ultimately developed assistive system will be packaged as a wearable device, the case study also investigated the usability of wearable devices on different age groups of Alzheimer’s patients. In addition, electro dermal activity for 4 patient of age group 55–60 and 60-7s years were also explored to assess the health condition of the patients.

Keywords

Sensor Machine learning Neurodegeneration Wearable devices Healthcare 

References

  1. 1.
    Ahmed, O.B., et al.: Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimed. Tools Appl. 74(4), 1249–1266 (2015)CrossRefGoogle Scholar
  2. 2.
    Association, A., et al.: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 12(4), 459–509 (2016)CrossRefGoogle Scholar
  3. 3.
    Aramendi, A.A., Aztiria, A., Basarab, A.: On the early diagnosis of Alzheimer’s Disease from multimodal signals: a survey. Artif. Intell. Med. 71, 1–29 (2016)CrossRefGoogle Scholar
  4. 4.
    Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor placement for activity detection using wearable accelerometers. In: Proceedings of BSN, pp. 24–29 (2010)Google Scholar
  5. 5.
    Bamberg, S.J.M., et al.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)CrossRefGoogle Scholar
  6. 6.
    Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehabil. Eng. 18(6), 619–627 (2010)CrossRefGoogle Scholar
  7. 7.
    Bulling, A., Ward, J.A., Gellersen, H., Troster, G.: Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Patt. Anal. Mach. Intell. 33(4), 741–753 (2011)CrossRefGoogle Scholar
  8. 8.
    Crouter, S.E., Clowers, K.G., Bassett Jr., D.R.: A novel method for using accelerometer data to predict energy expenditure. J. Appl. Physiol. 100(4), 1324–1331 (2006)CrossRefGoogle Scholar
  9. 9.
    Dauwels, J., et al.: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int. J. Alzheimer’s Dis. (4), 10 (2011)Google Scholar
  10. 10.
    Farringdon, J., Moore, A.J., Tilbury, N., Church, J., Biemond, P.D.: Wearable sensor badge and sensor jacket for context awareness. In: Proceedings of ISWC, pp. 107–113 (1999)Google Scholar
  11. 11.
    Guo, J., Zhou, X., Sun, Y., Ping, G., Zhao, G., Li, Z.: Smartphone-based patients’ activity recognition by using a self-learning scheme for medical monitoring. J. Med. Syst. 40(6), 140 (2016)CrossRefGoogle Scholar
  12. 12.
    Im, S., Kim, I.J., Ahn, S.C., Kim, H.G.: Automatic ADL classification using 3-axial accelerometers and RFID sensor. In: Proceedings of MFI, pp. 697–702 (2008)Google Scholar
  13. 13.
    Labate, D., Foresta, F.L., Morabito, G., Palamara, I., Morabito, F.C.: Entropic measures of EEG complexity in Alzheimer’s disease through a multivariate multiscale approach. IEEE Sens. J. 13(9), 3284–3292 (2013)CrossRefGoogle Scholar
  14. 14.
    Lopez, D., Sekaran, G.: Climate change and disease dynamics - a big data perspective. Int. J. Infect. Dis. 45, 23–24 (2016)CrossRefGoogle Scholar
  15. 15.
    Mahmud, M., et al.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Patterson, D.J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Proceedings of ISWC, pp. 44–51 (2005)Google Scholar
  17. 17.
    Pedro, S.: Sensor-Based Detection of Alzheimer’s Disease-Related Behaviours. University of Coimbra, Coimbra (2013)Google Scholar
  18. 18.
    Pedro, S., Quintas, J., Menezes, P.: Sensor-based detection of Alzheimer’S disease-related behaviors. In: Zhang, Y.-T. (ed.) The International Conference on Health Informatics. IP, vol. 42, pp. 276–279. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03005-0_70CrossRefGoogle Scholar
  19. 19.
    Prince, M., Ali, G., Guerchet, M., Prina, M., Albanese, E., Wu, Y.T.: Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther. 8, 23 (2016)CrossRefGoogle Scholar
  20. 20.
    Riboni, D., et al.: SmartFABER: recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 67, 57–74 (2016)CrossRefGoogle Scholar
  21. 21.
    Rosén, C., Hansson, O., Blennow, K., Zetterberg, H.: Fluid biomarkers in Alzheimer’s disease-current concepts. Mol. Neurodegener. 8(1), 20 (2013)CrossRefGoogle Scholar
  22. 22.
    Tao, W., Liu, T.Z.R.F.H.: Gait analysis using wearable sensors. Sensor 12(2), 2255–2283 (2012)CrossRefGoogle Scholar
  23. 23.
    Tao, W., Liu, T., Zheng, R., Feng, H.: Gait analysis using wearable sensors. Sensors 12(2), 2255–2283 (2012)CrossRefGoogle Scholar
  24. 24.
    Varatharajan, R., Manogaran, G., Priyan, M., Sundarasekar, R.: Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 1–10 (2017)Google Scholar
  25. 25.
    Zhou, X., Xu, J.: Identification of Alzheimer’s disease-associated long noncoding RNAs. Neurobiol. Aging 36(11), 2925–2931 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tajim Md. Niamat Ullah Akhund
    • 1
  • Md. Julkar Nayeen Mahi
    • 1
  • A. N. M. Hasnat Tanvir
    • 1
  • Mufti Mahmud
    • 2
  • M. Shamim Kaiser
    • 1
  1. 1.Institute of Information TechnologyJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Computing and Technology, School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations