Advertisement

Deep Neural Networks for Automatic Classification of Anesthetic-Induced Unconsciousness

  • Konstantinos Patlatzoglou
  • Srivas Chennu
  • Mélanie Boly
  • Quentin Noirhomme
  • Vincent Bonhomme
  • Jean-Francois Brichant
  • Olivia Gosseries
  • Steven Laureys
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Despite the common use of anesthetics to modulate consciousness in the clinic, brain-based monitoring of consciousness is uncommon. We combined electroencephalographic measurement of brain activity with deep neural networks to automatically discriminate anesthetic states induced by propofol. Our results with leave-one-participant-out-cross-validation show that convolutional neural networks significantly outperform multilayer perceptrons in discrimination accuracy when working with raw time series. Perceptrons achieved comparable accuracy when provided with power spectral densities. These findings highlight the potential of deep convolutional networks for completely automatic extraction of useful spatio-temporo-spectral features from human EEG.

Keywords

Consciousness Anesthesia EEG Deep learning 

Notes

Acknowledgements

We acknowledge funding from the UK Engineering and Physical Sciences Research Council [EP/P033199/1], the Belgian National Fund for Scientific Research, the European Commission, the Human Brain Project, the Luminous project, the French Speaking Community Concerted Research Action, the Belgian American Educational Foundation, the Wallonie-Bruxelles Federation, the European Space Agency, the University and University Hospital of Liège (Belgium). This research was undertaken with the support of the Alan Turing Institute (UK Engineering and Physical Sciences Research Council Grant EP/N510129/1).

References

  1. 1.
    Purdon, P.L., et al.: Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. (2013).  https://doi.org/10.1073/pnas.1221180110CrossRefGoogle Scholar
  2. 2.
    Avidan, M.S., et al.: Prevention of intraoperative awareness in a high-risk surgical population. N. Engl. J. Med. (2011).  https://doi.org/10.1056/NEJMoa1100403CrossRefGoogle Scholar
  3. 3.
    Chennu, S., O’Connor, S., Adapa, R., Menon, D.K., Bekinschtein, T.A.: Brain connectivity dissociates responsiveness from drug exposure during propofol-induced transitions of consciousness. PLoS Comput. Biol. 12, 1–17 (2016).  https://doi.org/10.1371/journal.pcbi.1004669CrossRefGoogle Scholar
  4. 4.
    Murphy, M., et al.: Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283–291 (2011).  https://doi.org/10.1093/sleep/34.3.283CrossRefGoogle Scholar
  5. 5.
    Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017).  https://doi.org/10.1002/hbm.23730CrossRefGoogle Scholar
  6. 6.
    Stober, S., Cameron, D.J., Grahn, J.A.: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings. Neural Inf. Process. Syst. 2014, 1–9 (2014)Google Scholar
  7. 7.
    Howbert, J.J., et al.: Forecasting seizures in dogs with naturally occurring epilepsy. PLoS ONE (2014).  https://doi.org/10.1371/journal.pone.0081920CrossRefGoogle Scholar
  8. 8.
    Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia (2011).  https://doi.org/10.1111/j.1528-1167.2011.03138.xCrossRefGoogle Scholar
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 1–9 (2012). http://dx.doi.org/10.1016/j.protcy.2014.09.007
  10. 10.
    Juel, B.E., Romundstad, L., Kolstad, F., Storm, J.F., Larsson, P.G.: Distinguishing anesthetized from awake state in patients: a new approach using one second segments of raw EEG. Front. Hum. Neurosci. (2018).  https://doi.org/10.3389/fnhum.2018.00040CrossRefGoogle Scholar
  11. 11.
    Korshunova, I., Kindermans, P.-J., Degrave, J., Verhoeven, T., Brinkmann, B.H., Dambre, J.: Towards improved design and evaluation of epileptic seizure predictors. IEEE Trans. Biomed. Eng. 65, 502 (2017).  https://doi.org/10.1109/TBME.2017.2700086CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Kent Chatham MaritimeKentUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.Department of Neurology and Department of PsychiatryUniversity of WisconsinMadisonUSA
  4. 4.Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
  5. 5.GIGA - Consciousness, Anesthesia and Intensive Care Medicine LaboratoryUniversity and CHU University Hospital of LiegeLiegeBelgium
  6. 6.Department of Anesthesia and Intensive Care MedicineCHU University Hospital of LiegeLiegeBelgium
  7. 7.Department of AnesthesiaUniversity of LiegeLiegeBelgium
  8. 8.Coma Science Group, GIGA ConsciousnessUniversity and University Hospital of LiègeLiègeBelgium

Personalised recommendations