Handbook of Diagnostic Classification Models pp 593-601 | Cite as
Cognitive Diagnosis Modeling Using the GDINA R Package
- 518 Downloads
Abstract
The GDINA R package (Ma and de la Torre, GDINA: The generalized DINA model framework. R package version 2.3.2. Retrieved from https://CRAN.R-project.org/package=GDINA: 2019) provides psychometric tools for estimating a range of cognitive diagnosis models (CDMs) and conducting various CDM analyses. The package is developed in the R programming environment (R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/: 2018). This chapter describes the main features of the package and presents an exemplary analysis of data to illustrate the use of the package.
Keywords
Cognitive diagnosis CDM G-DINA model GDINA R packageReferences
- Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.CrossRefGoogle Scholar
- Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). Shiny: Web application framework for R. R package version 1.0.5, Retrieved from https://CRAN.R-project.org/package=shiny.
- Chen, J., & de la Torre, J. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37, 419–437.CrossRefGoogle Scholar
- Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50, 123–140.CrossRefGoogle Scholar
- R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ Google Scholar
- de Ayala, R. J. (2013). The theory and practice of item response theory. New York: Guilford Publications.Google Scholar
- de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.CrossRefGoogle Scholar
- de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81, 253–273.CrossRefGoogle Scholar
- de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.CrossRefGoogle Scholar
- de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73, 595–624.CrossRefGoogle Scholar
- de la Torre, J., & Lee, Y.-S. (2013). Evaluating the Wald test for item-level comparison of saturated and reduced models in cognitive diagnosis. Journal of Educational Measurement, 50, 355–373.CrossRefGoogle Scholar
- de la Torre, J., & Ma, W. (2016, August). Cognitive diagnosis modeling: A general framework approach and its implementation in R. New York: A Short Course at the Fourth Conference on Statistical Methods in Psychometrics, Columbia University.Google Scholar
- Doornik, J. A. (2009). Object-oriented matrix programming using Ox (Version 6) [Computer software]. London: Timberlake Consultants Press.Google Scholar
- Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40, 1–18.Google Scholar
- Eddelbuettel, D., & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics and Data Analysis, 71, 1054–1063.CrossRefGoogle Scholar
- Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301–321.CrossRefGoogle Scholar
- Hartz, S. M. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: Blending theory with practicality. (Unpublished doctoral dissertation). University of Illinois, Urbana-Champaign.Google Scholar
- Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.CrossRefGoogle Scholar
- Hou, L., de la Torre, J., & Nandakumar, R. (2014). Differential item functioning assessment in cognitive diagnostic modeling: Application of the Wald test to investigate DIF in the DINA model. Journal of Educational Measurement, 51, 98–125.CrossRefGoogle Scholar
- Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71, 407–419.CrossRefGoogle Scholar
- Kuo, B. C., Chen, C. H., Yang, C. W., & Mok, M. M. C. (2016). Cognitive diagnostic models for tests with multiple-choice and constructed-response items. Educational Psychology, 36, 1115–1133.CrossRefGoogle Scholar
- Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The Attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–237.CrossRefGoogle Scholar
- Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33, 579–598.CrossRefGoogle Scholar
- Liu, Y., Tian, W., & Xin, T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41, 3–26.CrossRefGoogle Scholar
- Ma, W. (2019). A diagnostic tree model for polytomous responses with multiple strategies. British Journal of Mathematical and Statistical Psychology, 72, 61–82.Google Scholar
- Ma, W., & de la Torre, J. (2019). An empirical Q-matrix validation method for the sequential G-DINA model. Advanced online publication. https://doi.org/10.1111/bmsp.12156.
- Ma, W., & de la Torre, J. (2019). GDINA: The generalized DINA model framework. R package version, 2.3.2. Retrieved from https://CRAN.R-project.org/package=GDINA Google Scholar
- Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection and attribute classification. Applied Psychological Measurement, 40, 200–217.Google Scholar
- Ma, W., Terzi, R., Lee, S., & de la Torre, J. (2017, April). Multiple group cognitive diagnosis models and their applications in detecting differential item functioning. Paper presented at the annual meeting of the American Educational Research Association, San Antonio, TX.Google Scholar
- Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69, 253–275.Google Scholar
- Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.CrossRefGoogle Scholar
- Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models. Measurement, 11, 71–101.Google Scholar
- Maydeu-Olivares, A., & Cai, L. (2006). A cautionary note on using G2 (dif) to assess relative model fit in categorical data analysis. Multivariate Behavioral Research, 41, 55–64.CrossRefGoogle Scholar
- Philipp, M., Strobl, C., de la Torre, J., & Zeileis, A. (2018). On the estimation of standard errors in cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 43, 88–115.CrossRefGoogle Scholar
- Sorrel, M. A., Abad, F. J., Olea, J., de la Torre, J., & Barrada, J. R. (2017a). Inferential item-fit evaluation in cognitive diagnosis modeling. Applied Psychological Measurement, 41, 614–631.CrossRefGoogle Scholar
- Sorrel, M. A., de la Torre, J., Abad, F. J., & Olea, J. (2017b). Two-step likelihood ratio test for item-level model comparison in cognitive diagnosis models. Methodology, 13, 39–47.CrossRefGoogle Scholar
- Templin, J. L., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317–339.CrossRefGoogle Scholar
- Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.CrossRefGoogle Scholar
- Templin, J. L., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32, 37–50.CrossRefGoogle Scholar
- von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307.CrossRefGoogle Scholar
- von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM). ETS Research Report Series, 2014, 1–13.CrossRefGoogle Scholar
- Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report Series, 2008, 1–18.Google Scholar