Advertisement

Using Mplus to Estimate the Log-Linear Cognitive Diagnosis Model

  • Meghan Fager
  • Jesse Pace
  • Jonathan L. TemplinEmail author
Chapter
Part of the Methodology of Educational Measurement and Assessment book series (MEMA)

Abstract

In this chapter, we present the software package Mplus (Muthén LK, Muthén BO, Mplus User’s Guide. 8th edn. Los Angeles, Muthén & Muthén. https://www.statmodel.com/, 2017) with the Log-linear Cognitive Diagnosis Model (LCDM), a general model for diagnostic assessment (Henson RA, Templin JL, Willse JT, Psychometrika, 74(2):191–210, 2009; see also Chap.  8 in this volume). We devote most of this chapter to presenting relevant features of the LCDM as implemented in Mplus with a conceptual example using fraction subtraction data (Tatsuoka KK, Analysis of errors in fraction addition and subtraction problems, Report NIE-G-81-0002. University of Illinois, Computer-based Education Research Library, Urbana, 1984, Tatsuoka C, J R Stat Soc Series C (Appl Stat), 51:337 350.  https://doi.org/10.1111/1467-9876.00272, 2002) to illustrate syntax composition, output evaluation, and assessment refinement.

References

  1. Chiu, C.-Y., & Douglas, J. A. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225–250.  https://doi.org/10.1007/s00357-013-9132-9 CrossRefGoogle Scholar
  2. de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343–362.  https://doi.org/10.1111/j.17453984.2008.00069.x CrossRefGoogle Scholar
  3. de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115–130.  https://doi.org/10.3102/1076998607309474 CrossRefGoogle Scholar
  4. de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73, 595–624.  https://doi.org/10.1007/s11336-008-9063-2 CrossRefGoogle Scholar
  5. DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.  https://doi.org/10.1177/0146621610377081 CrossRefGoogle Scholar
  6. George, A. C., Robitzsch, A., Kiefer, T., Gross, J., & Ünlü, A. (2016). The R package CDM for cognitive diagnosis models. Journal of Statistical Software, 74, 1–24.  https://doi.org/10.18637/jss.v074.i02 CrossRefGoogle Scholar
  7. Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191–210.CrossRefGoogle Scholar
  8. Houts, C. R., & Cai, L. (2016). flexMIRT R user’s manual version 3.5: Flexible multilevel multidimensional item analysis and test scoring. Chapel Hill, NC: Vector Psychometric Group.Google Scholar
  9. McLachlan, G., & Peel, D. (2000). Finite mixture models. New York, NY: Wiley.CrossRefGoogle Scholar
  10. Mislevy, R. J. (1996). Test theory reconceived. Journal of Educational Measurement, 33, 379–416.  https://doi.org/10.1111/j.17453984.1996.tb00498.x CrossRefGoogle Scholar
  11. Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén. https://www.statmodel.com/
  12. R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ Google Scholar
  13. Robitzsch, A., Kiefer, T., George, A. C., & Ünlü, A. (2018). CDM: Cognitive diagnosis modeling. R package version 6. 2–91. https://CRAN.R-project.org/package=CDM
  14. Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society Series C (Applied Statistics), 51, 337–350.  https://doi.org/10.1111/1467-9876.00272 CrossRefGoogle Scholar
  15. Tatsuoka, K. K. (1984). Analysis of errors in fraction addition and subtraction problems (Report NIE-G-81-0002). Urbana, IL: University of Illinois, Computer-based Education Research Library.Google Scholar
  16. Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconception by the pattern classification approach. Journal of Educational Statistics, 10, 55–73.  https://doi.org/10.2307/1164930 CrossRefGoogle Scholar
  17. Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.  https://doi.org/10.1037/1082-989X.11.3.287 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meghan Fager
    • 1
  • Jesse Pace
    • 2
  • Jonathan L. Templin
    • 3
    Email author
  1. 1.National University, Precision InstituteLa JollaUSA
  2. 2.University of KansasLawrenceUSA
  3. 3.Educational Measurement and Statistics ProgramUniversity of IowaIowa CityUSA

Personalised recommendations