Handbook of Diagnostic Classification Models pp 549-572 | Cite as
The R Package CDM for Diagnostic Modeling
- 1 Citations
- 508 Downloads
Abstract
In this chapter, the R (R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, 2017) pack-age CDM (Robitzsch A, Kiefer T, George AC, Uenlue A, CDM: cognitive diagnosis modeling. R package version 6.0-101. https://CRAN.R-project.org/package=CDM, 2017; George AC, Robitzsch A, Kiefer T, Groß J, Ünlü A, J Stat Softw 74(2):1–24. 10.18637/jss.v074.i02, 2016) for estimating diagnostic classification models is introduced. First, the model classes that can be estimated with the CDM package are introduced. Second, the CDM package structure and some of its features are discussed. Third, the usage of the CDM package is demonstrated in a data application. Finally, potential future developments of the CDM package are discussed.
Keywords
Diagnostic classification models Software R Estimation Regularization Latent class modelsReferences
- Asparouhov, T., & Muthen, B. (2014). Variable-specific entropy contribution (Technical appendix). http://www.statmodel.com/7_3_papers.shtml
- Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72(2), 141–157.CrossRefGoogle Scholar
- Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122–4137.CrossRefGoogle Scholar
- Breheny, P., & Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5(1), 232–253.CrossRefGoogle Scholar
- Chalmers, R. P. (2018). Numerical approximation of the observed information matrix with Oakes’ identity. British Journal of Mathematical and Statistical Psychology, 71(3), 415–436.Google Scholar
- Chen, J., de la Torre, J., & Zhang, Z. (2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123–140.CrossRefGoogle Scholar
- Chen, J., & Zhou, H. (2017). Test designs and modeling under the general nominal diagnosis model framework. PLoS One, 12(6), e0180016.CrossRefGoogle Scholar
- Chen, Y., Li, X., Liu, J., & Ying, Z. (2016). A fused latent and graphical model for multivariate binary data. arXiv:1606.08925.Google Scholar
- Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82(3), 660–692.CrossRefGoogle Scholar
- Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850–866.CrossRefGoogle Scholar
- Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598–618.CrossRefGoogle Scholar
- Chiu, C.-Y., & Köhn, H.-F. (this volume). Nonparametric methods in cognitively diagnostic assessment. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Croon, M. (1990). Latent class analysis with ordered latent classes. British Journal of Mathematical and Statistical Psychology, 43(2), 171–192.CrossRefGoogle Scholar
- Cui, Y., Gierl, M. J., & Chang, H.-H. (2012). Estimating classification consistency and accuracy for cognitive diagnostic assessment. Journal of Educational Measurement, 49(1), 198–138.CrossRefGoogle Scholar
- Culpepper, S. A., & Hudson, A. (2018). An improved strategy for Bayesian estimation of the reduced reparametrized unified model. Applied Psychological Measurement, 42(2), 99–115.CrossRefGoogle Scholar
- de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343–362.CrossRefGoogle Scholar
- de la Torre, J. (2009a). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163–183.CrossRefGoogle Scholar
- de la Torre, J. (2009b). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130.CrossRefGoogle Scholar
- de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199.CrossRefGoogle Scholar
- de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333–353.CrossRefGoogle Scholar
- de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595–624.CrossRefGoogle Scholar
- de la Torre, J., & Lee, Y.-S. (2013). Evaluating the Wald test for item-level comparison of saturated and reduced models in cognitive diagnosis. Journal of Educational Measurement, 50(4), 355–373.CrossRefGoogle Scholar
- de la Torre, J., & Minchen, N. D. (this volume). The G-DINA model framework. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- De Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11(3), 183–196.CrossRefGoogle Scholar
- Decarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447–468.CrossRefGoogle Scholar
- Desmarais, M. C., & Naceur, R. (2013). A matrix factorization method for mapping items to skills and for enhancing expert-based Q-matrices. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial intelligence in education (pp. 441–450). Berlin, Germany: Springer.CrossRefGoogle Scholar
- Dibello, L. V., Roussos, L. A., & Stout, W. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics, volume 26, psychometrics (pp. 979–1030). Amsterdam, The Netherlands: Elsevier.Google Scholar
- Embretson, S. E. (this volume). Diagnostic modeling of skill hierarchies and cognitive processes with MLTM-D. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Fan, J., & Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 20(1), 101–148.Google Scholar
- Fiacco, A. V., & McCormick, G. P. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. New York, NY: Wiley.Google Scholar
- Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38(1), 87–111.CrossRefGoogle Scholar
- Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87(418), 476–486.CrossRefGoogle Scholar
- Formann, A. K. (2007). (Almost) equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 177–189). New York, NY: Springer.CrossRefGoogle Scholar
- Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological Methods & Research, 26(4), 530–565.CrossRefGoogle Scholar
- Formann, A. K., & Kohlmann, T. (2002). Three-parameter linear logistic latent class analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 183–210). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
- George, A. C., & Robitzsch, A. (2014). Multiple group cognitive diagnosis models, with an emphasis on differential item functioning. Psychological Test and Assessment Modeling, 56(4), 405–432.Google Scholar
- George, A. C., & Robitzsch, A. (2015). Cognitive diagnosis models in R: A didactic. The Quantitative Methods for Psychology, 11(3), 189–205.CrossRefGoogle Scholar
- George, A. C., & Robitzsch, A. (2018). Focusing on interactions between content and cognition: A new perspective on gender differences in mathematical sub-competencies. Applied Measurement in Education, 31(1), 79–97.CrossRefGoogle Scholar
- George, A. C., Robitzsch, A., Kiefer, T., Groß, J., & Ünlü, A. (2016). The R package CDM for cognitive diagnosis models. Journal of Statistical Software, 74(2), 1–24. https://doi.org/10.18637/jss.v074.i02 CrossRefGoogle Scholar
- Groß, J., & George, A. C. (2014). On prerequisite relations between attributes in noncompensatory diagnostic classification. Methodology, 10(3), 100–107.CrossRefGoogle Scholar
- Han, Z., & Johnson, M. S. (this volume). Global- and item-level model fit indices. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
- Henson, R., & Templin, J. L. (this volume). Loglinear cognitive diagnostic model (LCDM). In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Henson, R., Roussos, L., Douglas, J., & He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32(4), 275–288.CrossRefGoogle Scholar
- Hojtink, H., & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62(2), 171–189.CrossRefGoogle Scholar
- Hong, H., Wang, C., Lim, Y. C., & Douglas, J. (2015). Efficient models for cognitive diagnosis with continuous and mixed-type latent variables. Applied Psychological Measurement, 39(1), 31–43.CrossRefGoogle Scholar
- Hou, L., de la Torre, J., & Nandakumar, R. (2014). Differential item functioning assessment in cognitive diagnostic modeling: Application of the Wald test to investigate DIF in the DINA model. Journal of Educational Measurement, 51(1), 98–125.CrossRefGoogle Scholar
- Hsieh, C. A., Xu, X., & von Davier, M. (2010). Variance estimation for NAEP data using a resampling-based approach: An application of cognitive diagnostic models (RR-10-26). Princeton, NJ: Educational Testing Service.Google Scholar
- Hu, J., Miller, M. D., Huggins-Manley, A. C., & Chen, Y. H. (2016). Evaluation of model fit in cognitive diagnosis models. International Journal of Testing, 16(2), 119–141.CrossRefGoogle Scholar
- Huang, H. Y., & Wang, W. C. (2014). The random-effect DINA model. Journal of Educational Measurement, 51(1), 75–97.CrossRefGoogle Scholar
- Huang, P. H., Chen, H., & Weng, L. J. (2017). A penalized likelihood method for structural equation modeling. Psychometrika, 82(2), 329–354.CrossRefGoogle Scholar
- Huo, Y., & de la Torre, J. (2014). Estimating a cognitive diagnostic model for multiple strategies via the EM algorithm. Applied Psychological Measurement, 38(6), 464–485.CrossRefGoogle Scholar
- Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for fusion model application to LanguEdge assessment. Language Testing, 26(1), 31–73.CrossRefGoogle Scholar
- Kang, H.-A., Liu, J., & Ying, Z. (2017). A general diagnostic classification model. arXiv:1707.06318.Google Scholar
- Khorramdel, L., Shin, H. J., and von Davier, M. (this volume). GDM software mdltm including parallel EM algorithm. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2009). A practical illustration of multidimensional diagnostic skills profiling: Comparing results from confirmatory factor analysis and diagnostic classification models. Studies in Educational Evaluation, 35(2–3), 64–70.CrossRefGoogle Scholar
- Kuo, B. C., Chen, C. H., & de la Torre, J. (2018). A cognitive diagnosis model for identifying coexisting skills and misconceptions. Applied Psychological Measurement, 42(3), 179–191.CrossRefGoogle Scholar
- Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule space approach. Journal of Educational Measurement, 41(3), 205–237.CrossRefGoogle Scholar
- Li, H., Hunter, C. V., & Lei, P. W. (2016). The selection of cognitive diagnostic models for a reading comprehension test. Language Testing, 33(3), 391–409.CrossRefGoogle Scholar
- Li, X., & Wang, W. C. (2015). Assessment of differential item functioning under cognitive diagnosis models: The DINA model example. Journal of Educational Measurement, 52(1), 28–54.CrossRefGoogle Scholar
- Liu, X., & Johnson, M. S. (this volume). Estimating CDMs using MCMC. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Liu, J., & Kang, H.-A. (this volume). Q-matrix learning via latent variable selection and identifiability. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19(5A), 1790–1817.CrossRefGoogle Scholar
- Liu, R., Huggins-Manley, A. C., & Bulut, O. (2018). Retrofitting diagnostic classification models to responses from IRT-based assessment forms. Educational and Psychological Measurement, 78(3), 357–383.CrossRefGoogle Scholar
- Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33(8), 579–598.CrossRefGoogle Scholar
- Liu, Y., Xin, T., Andersson, B., & Tian, W. (2018). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology (in press). https://doi.org/10.1111/bmsp.12134.
- Ma, W. (this volume). Cognitive diagnosis modeling using the GDINA R package. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253–275.CrossRefGoogle Scholar
- Ma, W., Iaconangelo, C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200–217.CrossRefGoogle Scholar
- Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49(4), 305–328.CrossRefGoogle Scholar
- McDonald, R. P., & Mok, M. M. C. (1995). Goodness of fit in item response models. Multivariate Behavioral Research, 30(1), 23–40.CrossRefGoogle Scholar
- Mislevy, R. J., & Wilson, M. (1996). Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika, 61(1), 41–71.CrossRefGoogle Scholar
- Nussbeck, F. W., & Eid, M. (2015). Multimethod latent class analysis. Frontiers in Psychology | Quantitative Psychology and Measurement, 6, 1332.Google Scholar
- Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. Journal of the Royal Statistical Society: Series B, 61(2), 479–482.CrossRefGoogle Scholar
- Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24(1), 50–64.CrossRefGoogle Scholar
- Ozaki, K. (2015). DINA models for multiple-choice items with few parameters: Considering incorrect answers. Applied Psychological Measurement, 39(6), 431–447.CrossRefGoogle Scholar
- Park, Y. S., & Lee, Y.-S. (this volume). Explanatory cognitive diagnostic models. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Park, J. Y., Lee, Y.-S., & Johnson, M. S. (2017). An efficient standard error estimator of the DINA model parameters when analysing clustered data. International Journal of Quantitative Research in Education, 4(1–2), 159–190.CrossRefGoogle Scholar
- Philipp, M., Strobl, C., de la Torre, J., & Zeileis, A. (2018). On the estimation of standard errors in cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 43(1), 88–115.CrossRefGoogle Scholar
- Pritikin, J. N. (2017). A comparison of parameter covariance estimation methods for item response models in an expectation-maximization framework. Cogent Psychology, 4, 1279435.CrossRefGoogle Scholar
- Qiu, X.-L., Li, X., & Wang, W.-C. (this volume). Differential item functioning in diagnostic classification models. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
- Raiche, G., Magis, D., Blais, J. G., & Brochu, P. (2012). Taking atypical response patterns into account. In M. Simon, K. Ercikan, & M. Rousseau (Eds.), Improving large scale assessment in education: Theory, issues and practice (pp. 238–259). New York, NY: Routledge.CrossRefGoogle Scholar
- Ravand, H., & Robitzsch, A. (2015). Cognitive diagnostic modeling using R. Practical Assessment, Research & Evaluation, 20(11), 1–12.Google Scholar
- Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2017). CDM: Cognitive diagnosis modeling. R package version 6.0-101. https://CRAN.R-project.org/package=CDM
- Rupp, A., & Templin, J. (2008). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research and Perspectives, 6(4), 219–262.Google Scholar
- San Martin, E. S., del Pino, G., & De Boeck, P. (2006). IRT models for ability-based guessing. Applied Psychological Measurement, 30(3), 183–203.CrossRefGoogle Scholar
- Sen, S., & Bradshaw, L. (2017). Comparison of relative fit indices for diagnostic model selection. Applied Psychological Measurement, 41(6), 422–438.CrossRefGoogle Scholar
- Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223–232.CrossRefGoogle Scholar
- Shin, H. J., Wilson, M., & Choi, I. H. (2017). Structured constructs models based on change-point analysis. Journal of Educational Measurement, 54(3), 306–332.CrossRefGoogle Scholar
- Sinharay, S., & Johnson, M. S. (this volume). Measures of agreement: Reliability, classification accuracy, and classification consistency. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Sorrel, M. A., Abad, F. J., Olea, J., de la Torre, J., & Barrada, J. R. (2017). Inferential item-fit evaluation in cognitive diagnosis modeling. Applied Psychological Measurement, 41(8), 614–631.CrossRefGoogle Scholar
- Stout, W., Henson, R., DiBello, L., & Shear, B. (this volume). The reparameterized unified model system: a diagnostic assessment modeling approach. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via L 1 regularization. Psychometrika, 81(4), 921–939.CrossRefGoogle Scholar
- Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317–339.CrossRefGoogle Scholar
- Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32(2), 37–50.CrossRefGoogle Scholar
- Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305.CrossRefGoogle Scholar
- Tutz, G. (1997). Sequential models for ordered responses. In W. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 139–152). New York, NY: Springer.CrossRefGoogle Scholar
- Tutz, G., & Schauberger, G. (2015). A penalty approach to differential item functioning in Rasch models. Psychometrika, 80(1), 21–43.CrossRefGoogle Scholar
- van der Ark, L. A., Rossi, G., & Sijtsma, K. (this volume). Nonparametric item response theory and mokken scale analysis, with relations to latent class models and cognitive diagnostic models. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25(3), 283–294.CrossRefGoogle Scholar
- von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307.CrossRefGoogle Scholar
- von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement: Interdisciplinary Research & Perspectives, 7(1), 67–74.Google Scholar
- von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28.Google Scholar
- von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM) (RR-14-40). Educational Testing Service. Princeton, NJ.Google Scholar
- von Davier, M. (this volume). The general diagnostic model. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- von Davier, M., & Haberman, S. J. (2014). Hierarchical diagnostic classification models morphing into unidimensional ‘diagnostic’ classification models − A commentary. Psychometrika, 79(2), 340–346.CrossRefGoogle Scholar
- von Davier, M., & Lee, Y.-S. (this volume). Introduction: From latent class analysis to DINA and beyond. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- von Davier, M., Naemi, B., & Roberts, R. D. (2012). Factorial versus typological models: A comparison of methods for personality data. Measurement: Interdisciplinary Research and Perspectives, 10(4), 185–208.Google Scholar
- Wang, W., Song, L., Chen, P., Meng, Y., & Ding, S. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52(4), 457–476.CrossRefGoogle Scholar
- White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50(1), 1–25.CrossRefGoogle Scholar
- Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716–730.CrossRefGoogle Scholar
- Xu, G. (this volume). Identifiability and cognitive diagnosis models. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284–1295.CrossRefGoogle Scholar
- Xu, X., & von Davier, M. (2008a). Comparing multiple-group multinomial log-linear models for multidimensional skill distributions in the general diagnostic model (RR-08-35). Princeton, NJ: Educational Testing Service.Google Scholar
- Xu, X., & von Davier, M. (2008b). Fitting the structured general diagnostic model to NAEP data (RR-08-27). Educational Testing Service. Princeton, NJ.Google Scholar
- Xu, X., & von Davier, M. (this volume). Applying the general diagnostic model to proficiency data from a national skills survey. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models. Cham, Switzerland: Springer.Google Scholar
- Yamamoto, K. (1995). Estimating the effects of test length and test time on parameter estimation using the HYBRID model (TOEFL TR-10). Educational Testing Service. Princeton, NJ.Google Scholar
- Yamamoto, K., Khorramdel, L., & von Davier, M. (2013). Chapter 17: Scaling PIAAC cognitive data. In OECD (Ed.), Technical report of the survey of adult skills (PIAAC). Paris, France: OECD.Google Scholar
- Zhan, P. (2017). Using JAGS for Bayesian cognitive diagnosis models: A tutorial. arXiv:1708.02632.Google Scholar