Natural Product-Based Fabrication of Zinc-Oxide Nanoparticles and Their Applications

  • Azamal Husen


Identification of the major components in natural products is crucial to understand the more realistic mechanism of zinc oxide nanoparticles (ZnO NPs) fabrication processes. To obtain the desired Zn NPs, these particles are characterized using UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The morphology (size and shape) of NPs is regulated by the conditions during their synthesis. Despite the immense potentials of ZnO NPs, their cytotoxicity remains a cause of concern. Analysis of microbial cells is vital, as the functionalized NPs are incorporated within them. Different groups of microbes exhibit different susceptibilities to ZnO NPs, but the mechanism of controlling the toxicity is not yet clearly illustrated. They have been successfully exploited as antibacterial, antifungal, antioxidant, antidiabetic, anti-inflammatory and anticancer agent. Anticancer activity of ZnO NPs is associated with their ability to generate reactive oxygen species and induce apoptosis. In addition, ZnO NPs exhibit selective toxicity against the normal and cancerous cells. They are also used in drug delivery, gene delivery, bioimaging, treatment of different skin conditions, cosmetics as well as in agricultural system. This chapter elucidates the fabrication and characterization processes of ZnO NPs using plant system and discusses their beneficial applications.


Green synthesis Plant products ZnO nanoparticles Biomedicine Agriculture 


  1. Abdul H, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth. – Lamiaceae leaf extract. Mater Lett 131:16–18CrossRefGoogle Scholar
  2. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857PubMedPubMedCentralGoogle Scholar
  3. Aladpoosh R, Montazer M (2015) The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features. Carbohydr Polym 126:122–129PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ali A, Ansari AA, Kaushik A, Solanki PR, Barik A, Pandey MK, Malhotra BD (2009) Nanostructured zinc oxide film for urea sensor. Mater Lett 63:2473–2475CrossRefGoogle Scholar
  5. Ali K, Dwivedi S, Azam A, Saquib Q, Al-said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci 472:145–156PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ambika S, Sundrarajan M (2015) Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochem Photobio. B Biol 149:143–148CrossRefGoogle Scholar
  7. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutation Res 31:347–364PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu GY (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796CrossRefGoogle Scholar
  9. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015a) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A Mol Biomol Spectrosc 143:304–308PubMedCrossRefPubMedCentralGoogle Scholar
  10. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015b) Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semicond Process 39:621–628CrossRefGoogle Scholar
  11. Araujo-Lima CF, Nunes RJM, Carpes RM, Aiub FAF, Felzenszwalb I (2017) Pharmacokinetic and toxicological evaluation of a zinc gluconate-based chemical sterilant using in vitro and in silico approaches. BioMed Res Inter 2017:5746768CrossRefGoogle Scholar
  12. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313PubMedCrossRefPubMedCentralGoogle Scholar
  13. Awwad AM, Albiss B, Ahmad AL (2014) Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract. Adv Mater Lett 5:520–524CrossRefGoogle Scholar
  14. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, Saad WZ (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italic. J Photochem Photobiol B Biol 161:441–449CrossRefGoogle Scholar
  15. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, antibacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003CrossRefGoogle Scholar
  16. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  17. Brahms J, Mattai J, Jacoby R, Chopra S, Guenin E (2005) Dry deodorant containing a sesquiterpene alcohol and zinc oxide. U.S. Patent 20050191257 A1Google Scholar
  18. Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer M, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 2010:6522–6528CrossRefGoogle Scholar
  19. Brown HE (1976) Zinc oxide: properties and applications. International Lead Zinc Research Organization, New YorkGoogle Scholar
  20. Chan TCK (2005) Percutaneous penetration enhancers: an update. In: Proceedings 9th Biennial Conference of Perspectives in Percutaneous Penetration. 13 April, vol 2004. La Grande-Motte, France, pp 18–23Google Scholar
  21. Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7:501–512CrossRefGoogle Scholar
  22. Darrudi M, Oskuee RK, Kargar H (2013) Sol-gel synthesis, characterization and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram Int 40:4827–4831CrossRefGoogle Scholar
  23. De Graaf TP, Galley E, Butcher KE (1999) Use of an antimicrobial agent. European Patent EP1079799Google Scholar
  24. Deng Z, Chen M, Gu G, Wu L (2008) A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem B 112:16–22PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ding Y, Wang ZL (2009) Structures of planar defects in ZnO nanobelts and nanowires. Micron 40:335–342PubMedCrossRefPubMedCentralGoogle Scholar
  26. Divyapriya S, Sowmia C, Sasikala S (2014) Synthesis of zinc oxide nanoparticles and microbial activity of Murraya koenigii. World J Pharm Pharm Sci 12:1635–1645Google Scholar
  27. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Bio Sci 23:517–523CrossRefGoogle Scholar
  28. Donaldson K, Poland CA (2012) Inhaled nanoparticles and lung cancer – what we can learn from conventional particle toxicology. Swiss Med Wkly.
  29. Donaldson K, Seaton A (2012) A short history of the toxicology of inhaled particles. Part Fibre Toxico, vol 9, p 13Google Scholar
  30. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90PubMedCrossRefGoogle Scholar
  32. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica. Appl Surf Sci 345:329–336CrossRefGoogle Scholar
  33. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Adaikala Raj G (2015a) Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26:1639–1651CrossRefGoogle Scholar
  34. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015b) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 143:158–164PubMedCrossRefGoogle Scholar
  35. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573PubMedCrossRefGoogle Scholar
  36. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Na Rev Neurosci 6:449–462CrossRefGoogle Scholar
  37. Fu L, Fu Z (2015) Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41:2492–2496CrossRefGoogle Scholar
  38. Gnanasangeetha D, Thambwani DS (2013) Biogenic production of zinc oxide nanoparticles using Acalypha indica. J Chem Biol Phys Sci 1:238–246Google Scholar
  39. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G (2010) Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118:140–149PubMedCrossRefPubMedCentralGoogle Scholar
  40. Guo J, Peng C (2015) Synthesis of ZnO nanoparticles with a novel combustion method and their C2H5OH gas sensing properties. Ceram Int 41:2180–2186CrossRefGoogle Scholar
  41. Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  42. Halioua B, Ziskind B (2005) Medicine in the days of the pharaohs. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  43. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103PubMedPubMedCentralCrossRefGoogle Scholar
  44. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hong H, Shi J, Yang Y, Zhang Y, Engle JW, Nickles RJ, Wang X, Ca W (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11:3744–3750PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hu FX, Chen SH, Wang CY, Yuan R, Chai Y, Xiang Y, Wang C (2011) ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J Mol Catal B Enzym 72:298–304CrossRefGoogle Scholar
  47. Huang MH, Wu Y, Feick H, Tran N, Weber E (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 13:113–116CrossRefGoogle Scholar
  48. Hubbard NB, Culpepper ML, Howell LL (2006) Actuators for micro positioners and nano positioners. App Mech Rev 59:324–334CrossRefGoogle Scholar
  49. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229CrossRefGoogle Scholar
  50. Izu N, Shimada K, Akamatsu T, Itoh T, Shin W, Shiraishi K, Usui T (2014) Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV–vis–NIR absorption properties. Ceram Int 40:8775–8781CrossRefGoogle Scholar
  51. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ – Sci 30:168–175CrossRefGoogle Scholar
  52. Jang JS, Yu CJ, Choi SH, Ji SM, Kim ES, Lee JS (2008) Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity. J Catal 254:144–155CrossRefGoogle Scholar
  53. Jansen J, Karges W, Rink L (2009) Zinc and diabetes–clinical links and molecular mechanisms. J Nutr Biochem 20:399–417PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kakiuchi K, Hosono E, Kimura T, Imai H, Fujihara S (2006) Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions. J Sol-Gel Sci Technol 39:63–72CrossRefGoogle Scholar
  55. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365CrossRefGoogle Scholar
  56. Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP (2015) Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 139:200–205PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kavitha S, Dhamodaran M, Prasad R, Ganesan M (2017) Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. Int Nano Lett 7:141–147CrossRefGoogle Scholar
  58. Kavithaa K, Paulpandi M, Ponraj T, Murugan K, Sumathi S (2016) Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cells through facile biosynthesized zinc oxide nanorods. Karbala Int J Mod Sci 2:46–55CrossRefGoogle Scholar
  59. Kim S, Lee S, Lee I (2012b) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806Google Scholar
  60. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012a) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim MH, Seo JH, Kim HM, Jeong HJ (2014) Zinc oxide nanoparticles, a novel candidate for the treatment of allergic inflammatory diseases. Eur J Pharmacol 738:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  62. Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi 244:3027–3073CrossRefGoogle Scholar
  63. Krupa AND, Vimala R (2016) Evaluation of tetraethoxysilane (TEOS) sol-gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C 61:728–735CrossRefGoogle Scholar
  64. Kumar A, Pandey AK, Sing SS, Shanker R, Dhawan A (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B Biol 140:194–204CrossRefGoogle Scholar
  67. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lao CS, Park MC, Kuang Q, Deng Y, Sood AK, Polla DL, Wang ZL (2007) Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J Am Chem Soc 129:12096–12097PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204CrossRefGoogle Scholar
  70. Lingaraju K, Raja Naika H, Manjunath K, Basavaraj RB, Nagabhushana H, Nagaraju G, Suresh D (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. App Nanosci 6:703–710CrossRefGoogle Scholar
  71. Liu YL, Yang YH, Yang HF, Liu ZM, Shen GL, Yu RQ (2005) Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J Inorg Biochem 99:2046–2053PubMedCrossRefPubMedCentralGoogle Scholar
  72. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lu PJ, Huang SC, Chen YP, Chiueh LC, Shih DYC (2015) Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal 23:587–594PubMedCrossRefPubMedCentralGoogle Scholar
  75. Madan HR, Sharma SC, Udayabhanu, Suresh D, Vidya YS, Nagabhushana H, Rajanaik H, Anantharaju KS, Prashantha SC, Sadananda Maiya P (2016) Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc 152:404–416PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mahmud S, Abdullah MJ (2006) Nanotripods of zinc oxide, IEEE Conf. emerging technol—nanoelectron. pp 442–446Google Scholar
  77. Mahmud S, Johar M, Abdullah PGA, Chong J, Mohamad AK (2006) Nanostructure of ZnO fabricated via french process and its correlation to electrical properties of semiconducting varistors. Synth React Inorg Met Org Chem Nano-Met Chem 36:155–159CrossRefGoogle Scholar
  78. Manokari M, Shekhawat MS (2016) Biogenesis of zinc oxide nanoparticles using Couroupita guianensis Aubl. extracts—a green approach. World Sci News 29:135–145Google Scholar
  79. Manzo S, Rocco A, Carotenuto R, Picione Fde L, Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticles ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res Int 18:756–763PubMedCrossRefPubMedCentralGoogle Scholar
  80. Maremanda KP, Khan S, Jena G (2014) Zinc protects cyclophosphamide-induced testicular damage in rat: Involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun 445:591–596PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mehr ES, Sorbiun M, Ramazani A, Fardood ST (2018) Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci: Mater Electron 29:1333–1340Google Scholar
  82. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mirzaeia H, Darroudi M (2017) Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int 43:907–914CrossRefGoogle Scholar
  84. Mishra V, Sharma R (2015) Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int J Pharma Res Health Sci 3:694–699 14Google Scholar
  85. Moezzi A, Cortie M, McDonagh A (2011) Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton Trans 40:4871–4878PubMedCrossRefPubMedCentralGoogle Scholar
  86. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179PubMedCrossRefPubMedCentralGoogle Scholar
  87. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sun burned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280PubMedCrossRefPubMedCentralGoogle Scholar
  88. Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH (2014) Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis rhizome. Bioorg Med Chem Lett 24:4298–4303PubMedCrossRefPubMedCentralGoogle Scholar
  89. Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TVM, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B Biol 146:10–17CrossRefGoogle Scholar
  90. Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N (1997) The photogenotoxicity of titanium dioxide particles. Mutat Res 394:125–132PubMedCrossRefPubMedCentralGoogle Scholar
  91. Narendhran S, Sivaraj R (2016) Biogenic ZnO nanoparticles synthesized using L. aculeate leaf extract and their antifungal activity against plant fungal pathogens. Bull Mater Sci 39:1–5CrossRefGoogle Scholar
  92. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, Yan X, Wang T (2006) Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery. Small 2:621–625PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nie L, Gao L, Yan X, Wang T (2007) Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery. Nanotechnology 18:015101CrossRefGoogle Scholar
  95. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C (2009) Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res 2:882–890CrossRefGoogle Scholar
  96. Oudhia A, Kulkarni P, Sharma S (2015) Green synthesis of ZnO nanotubes for bioapplications. Int J Curr Eng Technol 1:280–281Google Scholar
  97. Ozgur U, Ya IA, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  98. Pandimurugan R, Thambidurai S (2016) Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv Powder Technol 27:1062–1072CrossRefGoogle Scholar
  99. Patnaik P (2003) Handbook of inorganic chemicals. McGraw Hill, New YorkGoogle Scholar
  100. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  101. Qian Y, Yao J, Russel M, Chen K, Wang X (2015) Characterization of green synthesized nano-formulation (ZnO – A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol 39:736–746PubMedCrossRefPubMedCentralGoogle Scholar
  102. Raja A, Ashokkumar S, Pavithra Marthandam R, Jayachandiran J, Kathiwada CP, Kaviyarasu K, Ganapathi Raman R, Swaminathan M (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B: Biol 181:53–58CrossRefGoogle Scholar
  103. Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, IllM C (2018) Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng 41:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  104. Rajalakshmi M, Sohila S, Ramya S, Divakar R, Ghosh C, Kalavathi S (2012) Blue green and UV emitting ZnO nanoparticles synthesized through a non-aqueous route. Opt Mater 34:1241–1245CrossRefGoogle Scholar
  105. Rajendran SP, Sengodan K (2017) Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanosci 2017:8348507Google Scholar
  106. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387PubMedCrossRefPubMedCentralGoogle Scholar
  107. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  108. Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594PubMedCrossRefGoogle Scholar
  109. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870PubMedCrossRefPubMedCentralGoogle Scholar
  110. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agri Food Chem 59:3485–3498CrossRefGoogle Scholar
  112. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89PubMedCrossRefPubMedCentralGoogle Scholar
  113. Samat NA, Nor RM (2013) Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram Int 39:S545–S548CrossRefGoogle Scholar
  114. Sawai J, Kojima H, Kano F, Igarashi H, Hashimoto A, Kawada E, Kokugan T, Shimizu M (1998) Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities. World J Microbiol Biotechnol 14:773–775CrossRefGoogle Scholar
  115. Senthilkumar SR, Sivakumar T (2014) Green tea Camellia sinensis mediated synthesis of zinc oxide nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465Google Scholar
  116. Sharma SC (2016) ZnO nano-flowers from Carica papaya milk: degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Opt Int J Light Electron Opt 127:6498–6512CrossRefGoogle Scholar
  117. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B Biol 162:199–207CrossRefGoogle Scholar
  119. Shekhawat MS, Ravindran CP, Manokari M (2015) A green approach to synthesize the zinc oxide nanoparticles using aqueous extracts of Ficus benghalensis L. Int J Biosci Agric Technol 6:1–5Google Scholar
  120. Shen L, Zhang H, Guo S (2009) Control on the morphologies of tetrapod ZnO nanocrystals. Mater Chem Phys 114:580–583CrossRefGoogle Scholar
  121. Shi J, Hong H, Ding Y, Yang Y, Wang F, Cai W, Wang X (2011) Evolution of zinc oxide nanostructures through kinetics control. J Mater Chem 21:9000–9008PubMedPubMedCentralCrossRefGoogle Scholar
  122. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett 11:98CrossRefGoogle Scholar
  123. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92CrossRefGoogle Scholar
  124. Siddiqi KS, Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett 13:141CrossRefGoogle Scholar
  125. Sindhura KS, Prasad TN, Selvam P, Hussain OM (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exoenzymes. Appl Nanosci 4:819–827CrossRefGoogle Scholar
  126. Singh SP, Arya SK, Pandey P, Malhotra BD (2007) Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl Phys Lett 91:063901CrossRefGoogle Scholar
  127. Solanki PR, Kaushik A, Ansari AA, Sumana G, Malhotra BD (2008) Zinc oxide-chitosan nanobiocomposite for urea sensor. Appl Phys Lett 93:163903CrossRefGoogle Scholar
  128. Sorbiun M, Mehr ES, Ramazani A, Fardood ST (2018) Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (Jaft) and comparing their photocatalytic degradation of basic violet 3. Int J Environ Res 12:29–37CrossRefGoogle Scholar
  129. Speight JG (2002) Chemical and process design handbook. McGraw Hill, Inc, New YorkGoogle Scholar
  130. Sudhagar S, Sathya S, Pandian K, Lakshmi BS (2011) Targeting and sensing cancer cells with ZnO nanoprobes in vitro. Biotechnol Lett 33:1891–1896PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26:1294–1299CrossRefGoogle Scholar
  132. Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI (2018) Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci: Nanosci Nanotechnol 9:015008Google Scholar
  133. Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454Google Scholar
  134. Tani T, Mdler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles by flame spray pyrolysis. J Nanopart Res 4:337–343CrossRefGoogle Scholar
  135. Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127CrossRefGoogle Scholar
  136. Vanathi P, Rajiv P, Narendhran S, Rajeshwari S, Rahman PKSM (2016) Biosynthesis and characterization of phytomediated zinc oxide nanoparticles: a green chemistry approach. Mater Lett 134:13–15CrossRefGoogle Scholar
  137. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398CrossRefGoogle Scholar
  138. Vidya C, Hiremath S, Chandraprabha MN, Venugopal I, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticle by Calotropis gigantea. Int J Curr Eng Technol 4:118–120Google Scholar
  139. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172CrossRefGoogle Scholar
  140. Wahab R, Kaushik NK, Kaushik N, Choi EH, Umar A, Dwivedi S, Musarrat J, Al-Khedhairy AA (2013) ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J Biomed Nanotechnol 9:1181–1189PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wang ZL (2004a) Nanostructures of zinc oxide. Mater Tod 7:26–33CrossRefGoogle Scholar
  142. Wang ZL (2004b) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Mat16:R829–R858Google Scholar
  143. Wang TX, Lou TJ (2008) Solvothermal synthesis and photoluminescence properties of ZnO nanorods and nanorod assemblies from ZnO2 nanoparticles. Mater Lett 62:2329–2331CrossRefGoogle Scholar
  144. Wang L, Muhammed M (1999) Synthesis of zinc oxide nanoparticles with controlled morphology. J Mater Chem 9:2871–2878CrossRefGoogle Scholar
  145. Wang G, Xu JJ, Ye LH, Zhu JJ, Chen HY (2002) Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 57:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang X, Liu J, Song J, Wang ZL (2007) Integrated nanogenerators in biofluid. Nano Lett 7:2475–2479PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wang H, Wingett D, Engelhard MH, Feris K, Reddy KM, Turner P, Layne J, Hanley C, Bell J, Tenne D, Wang C, Punnoose A (2009) Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J Mater Sci Mater Med 20:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830PubMedCrossRefGoogle Scholar
  149. Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112PubMedCrossRefGoogle Scholar
  150. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109Google Scholar
  151. World Health Organization (2006) Dermal absorption EHC 235. WHO Press, World Health Organization, GenevaGoogle Scholar
  152. Wu YL, Fu S, Tok AI, Zeng XT, Lim CS, Kwek LC, Boey FC (2008) A dual-colored bio-marker made of doped ZnO nanocrystals. Nanotechnology 19:345605PubMedCrossRefGoogle Scholar
  153. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807PubMedCrossRefGoogle Scholar
  154. Xie J, Li P, Li Y, Wang Y, Wei Y (2009) Morphology control of ZnO particles via aqueous solution route at low temperature. Mater Chem Phys 114:943–947CrossRefGoogle Scholar
  155. Xie J, Cao Y, Jia D, Li Y, Wang Y (2016) Solid-state synthesis of Y-doped ZnO nanoparticles with selective-detection gas-sensing performance. Ceram Int 42:90–96CrossRefGoogle Scholar
  156. Xiong HM (2013) ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater 25:5329–3535PubMedCrossRefPubMedCentralGoogle Scholar
  157. Xu HY, Wang H, Zhang YC, He WL, Zhu MK, Wang B, Yan H (2004) Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram Int 30:93–97CrossRefGoogle Scholar
  158. Yakimova R, Selegard L, Khranovskyy V, Pearce R, Spetz AL, Uvdal K (2012) ZnO materials and surface tailoring for biosensing. Front Biosci (Elite Ed) 4:254–278CrossRefGoogle Scholar
  159. Yang SJ, Park CR (2008) Facile preparation of monodisperse ZnO quantum dots with high quality photoluminescence characteristics. Nanotechnology 19:035609PubMedCrossRefPubMedCentralGoogle Scholar
  160. Yang Y, Guo W, Zhang Y, Ding Y, Wang X, Wang ZL (2011) Piezotronic effect on the output voltage of P3HT/ZnO micro/ nanowire heterojunction solar cells. Nano Lett 11:4812–4817PubMedCrossRefPubMedCentralGoogle Scholar
  161. Yoshida R, Kitamura D, Maenosono S (2009) Mutagenicity of water-soluble ZnO nanoparticles in Ames test. J Toxicol Sci 34:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yuan Q, Hein S, Misra RD (2010) New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6:2732–2739PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27CrossRefGoogle Scholar
  164. Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zhang P, Liu W (2010) ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 31:3087–3094PubMedCrossRefPubMedCentralGoogle Scholar
  166. Zhang H, Chen B, Jiang H, Wang C, Wang H, Wang X (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32:1906–1914PubMedCrossRefGoogle Scholar
  167. Zhao Z, Lei W, Zhang X, Wang B, Jiang H (2010) ZnO-based amperometric enzyme biosensors. Sensors (Basel) 10:1216–1231CrossRefGoogle Scholar
  168. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 3:064031CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Azamal Husen
    • 1
  1. 1.Department of BiologyCollege of Natural and Computational Sciences, University of GondarGondarEthiopia

Personalised recommendations