Advertisement

Green Synthesis of Gold Nanoparticles by Using Natural Gums

  • Madhusudhan Alle 
  • Reddy Ganapuram Bhagavanth 
  • Krishana Indana Murali 
Chapter

Abstract

This chapter presents a literature survey on the green synthesis of gold nanoparticles (AuNPs) of various shapes and sizes by using-natural gums obtained from various plant species. Natural gums play the role of both the reducing and stabilizing agents. The Nanoparticles (NPs) thus obtained are characterized by various techniques such as UV-Vis spectrophotometry, FTIR, HR-TEM, DLS, zeta potential, SAED, and X-ray diffraction measurements. Controlling factors such as concentration of natural gum, metal precursor, pH of the solution and reaction time play a major role in the synthesis and chwaracterization of gold NPs. The available information indicates that the gold NPs are mainly spherical in shape and crystalline in nature. The mechanism involved in reduction and stabilization of NPs has been explained by FTIR spectra. Some important applications of these particles have also been indicated in brief.

Keywords

Plant products Natural gums Fabrication methods Gold nanoparticles 

References

  1. Ahuja M, Singh S, Kumar A (2013) Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. Int J Biol Macromol 53:114–121PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alam MS, Garg A, Pottoo FH, Saifullah MK, Tareq AI, Manzoor O, Mohsin M, Javed MN (2017) Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 104:758–767PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arati R, Bhattacharya SB, Mukherjee AK, Rao CVN (1976) The structure of degraded bael (Aegle marmelos) gum. Carbohydr Res 50:87–96CrossRefGoogle Scholar
  4. Atnafu GA, Ayal AM, Akele ML, Addis KA, Reddy GB, Veerabhadram G, Madhusudhan A (2016) Microwave-assisted green synthesis of gold nanoparticles using olibanum gum (Boswellia serrata) and its catalytic reduction of 4-Nitrophenol and Hexacyanoferrate (III) by sodium borohydride. J Clust Sci 28:917–935Google Scholar
  5. Reddy GB, Madhusudhan A, Ramakrishna D, Ayodhya D, Veerabhadram G (2015a) Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: characterization, catalytic and antibacterial activity. J Nanostruct Chem 5:185–193Google Scholar
  6. Reddy GB, Madhusudhan A, Ramakrishna D, Ayodhya D, Veerabhadram G (2015b) Catalytic reduction of p-Nitrophenol and Hexacyanoferrate (III) by borohydride using green synthesized gold nanoparticles. J Chin Chem Soc 62:420–428Google Scholar
  7. Reddy GB, Madhusudhan A, Ramakrishna D, Ayodhya D, Veerabhadram G (2015c) Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int Nano Lett 5:215–222Google Scholar
  8. Reddy GB, Rajkumar B, Ramakrishna D, Girija MK, Veerabhadram G (2017) Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. J Clust Sci 28:2873–2890Google Scholar
  9. Bhardwaj TR, Kanwar M, Lal R, Gupta A (2000) Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 26:1025–1038PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306PubMedCrossRefPubMedCentralGoogle Scholar
  11. Biswala SK, Parida UK, Bindhani BK (2013) Gold nanoparticles capped with tamarind seed polysaccharide blended with chitosan composite for the growth of phosphate mineral. Int J Cur Eng Tech 3:1104–1108Google Scholar
  12. Bogunia-Kubik K, Sugisaka M (2002) From molecular biology to nanotechnology and nanomedicine. Biosystems 65:123–138PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bond GC, Sermon PA (1973) Gold catalysts for olefin hydrogenation. Gold Bull 6:102–105CrossRefGoogle Scholar
  14. Brown CL, Whitehouse MW, Tiekink ERT, Bushell GR (2008) Colloidal metallic gold is not bio-inert. Inflammopharmacology 16:133–137PubMedCrossRefPubMedCentralGoogle Scholar
  15. Choudhary PD, Pawar HA (2014) Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview. J Pharm 2014:204849Google Scholar
  16. Corma A, Serna P (2006) Chemo selective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nano synthesis. Chem Rev 107:2228–2269PubMedCrossRefPubMedCentralGoogle Scholar
  18. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedCrossRefPubMedCentralGoogle Scholar
  19. Das S, Ghosal PK, Ray B (1990) Structural studies of a polysaccharide from the seeds of salmalia malabarica. Carbohydr Res 207:336–339CrossRefGoogle Scholar
  20. Dey P, Sa B, Maiti S (2011) Carboxymethyl ethers of locust bean gum a review. Int J Pharm Pharm Sci 2:4–7Google Scholar
  21. Dhar S, Maheswara Reddy E, Shiras A, Pokharkar V, Prasad BLV (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14:10244–10250PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dhar S, Mali V, Bodhankar S, Shiras A, Prasad BL, Pokharkar V (2011) Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. J Appl Toxicol 31(5):411–420PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dimitratos N, Lopez-Sanchez JA, Hutchings JG (2012) Selective liquid phase oxidation with supported metal nanoparticles. Chem Sci 3:20–44CrossRefGoogle Scholar
  24. Dodi G, Hritcu D, Popa MI (2011) Carboxyl methylation of guar gum: synthesis and characterization. Cellulose Chem Technol 45:171–176Google Scholar
  25. Dror Y, Cohen Y, Yerushalmi-rozen R (2006) Structure of gum arabic in aqueous solution. J Polym Sci Part B Polym Phys 44:3265–3271CrossRefGoogle Scholar
  26. Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalization and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–191CrossRefGoogle Scholar
  27. Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3:34–55Google Scholar
  28. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282PubMedCrossRefGoogle Scholar
  29. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264PubMedCrossRefGoogle Scholar
  30. Erik CD, Alaaldin MA, Xiaohua H, Catherine JM, Mostafa AE (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  31. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20PubMedCrossRefPubMedCentralGoogle Scholar
  32. Galla NR, Dubasi GR (2010) Chemical and functional characterization of gum karaya (Sterculia urens L) seed meal. Food Hydrocoll 24:479–485CrossRefGoogle Scholar
  33. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862PubMedCrossRefGoogle Scholar
  34. Huang X, El-sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRefGoogle Scholar
  35. Huang I, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007a) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114CrossRefGoogle Scholar
  36. Huang CC, Yang Z, Lee KH, Chang HT (2007b) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6824–6828CrossRefGoogle Scholar
  37. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479 Google Scholar
  38. Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  39. Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229Google Scholar
  40. Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28CrossRefGoogle Scholar
  41. Ibrahim NA, Abo-Shosha MH, Allam EA, El-Zairy EM (2010) New thickening agents based on tamarind seed gum and karaya gum polysaccharides. Carbohydr Polym 81:402–408CrossRefGoogle Scholar
  42. Islam NU, Amin R, Shahid M, Amin M, Zaib S, Iqbal J (2017) A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anti-inflammatory and analgesic properties. BMC Complement Altern Med 17:276–293PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jie H, Yan L, Rong G (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for suzuki−miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061CrossRefGoogle Scholar
  44. Joshita D, Sutriyo PP, Anung P (2014) Antioxidant activity of gold nanoparticles using gum arabic as a stabilizing agent. Int J Pharm Pharm Sci 6:462–465Google Scholar
  45. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kora AJ, Arunachalam J (2012) Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. J Nanomater 2012:869765CrossRefGoogle Scholar
  47. Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520CrossRefGoogle Scholar
  48. Kumar A, Ahuja M (2012) Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 90:637–643PubMedCrossRefPubMedCentralGoogle Scholar
  49. Liu CP, Lin FS, Chien CT, Tseng SY, Luo CW, Chen CH, Chen JK, Tseng FG, Hwu Y, Lo LW, Yang CS, Lin SY (2013) In-situ formation and assembly of gold nanoparticles by gum arabic as efficient photothermal agent for killing cancer cells. Macromol Biosci 13:1314–1320PubMedCrossRefPubMedCentralGoogle Scholar
  50. Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41:242–257PubMedCrossRefPubMedCentralGoogle Scholar
  51. Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Sumathi N, Ming YY, Anren H, Surya SS (2014) Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 15:8216–8234Google Scholar
  52. Maity S, Sa B (2014) Ca-carboxymethyl xanthan gum mini-matrices: swelling, erosion and their impact on drug release mechanism. Int J Biol Macromol 68:78–85PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 46:387–398CrossRefGoogle Scholar
  55. Mirkin CA (2005) The beginning of a small revolution. Small 1:14–16PubMedCrossRefPubMedCentralGoogle Scholar
  56. Muddineti OS, Kumari P, Ajjarapu S, Lakhani PM, Bahl R, Ghosh B, Biswas S (2016) Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer. Nanotechnology 27(32):325101–325112PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ojha AK, Maiti D, Chandra K, Mondal S, Das Sadhan K, Roy D, Ghosh K, Islam SS (2008) Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum). Carbohydr Res 19:1222–1231CrossRefGoogle Scholar
  58. Padil VV, Černík M (2015) Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater 287:102–110PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pandey S, Goswami GK, Nanda KK (2013) Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym 94:229–234PubMedCrossRefPubMedCentralGoogle Scholar
  60. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 5:65–71CrossRefGoogle Scholar
  61. Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  62. Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R (2015) Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 80:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  63. Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013a) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699PubMedCrossRefPubMedCentralGoogle Scholar
  64. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ (2013b) Locust bean gum: a versatile biopolymer. Carbohydr Polym 94:814–821PubMedCrossRefPubMedCentralGoogle Scholar
  65. Punuri JB, Sharma P, Sibyala S, Tamuli R, Bora U (2012) Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int Nano Lett 2:18–27CrossRefGoogle Scholar
  66. Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ (2011) Modified gums: approaches and applications in drug delivery. Carbohydr Polym 83:1031–1047CrossRefGoogle Scholar
  67. Rao K, Imran M, Jabri T, Ali I, Perveen S, Shafiullah AS, Shah MR (2017) Gum tragacanth stabilized green gold nanoparticles as cargos for naringin loading: a morphological investigation through AFM. Carbohydr Polym 15:243–252CrossRefGoogle Scholar
  68. Rivas L, Sanchez-Cortes S, Garcia-Ramos JV, Morcillo G (2001) Growth of silver colloidal particles obtained by citrate reduction to increase the raman enhancement factor. Langmuir 17:574–577CrossRefGoogle Scholar
  69. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  70. Saikat M, Ipsita KS, Syed SI (2012) Green synthesis of gold nanoparticles using gum polysaccharide of Cochlospermum religiosum (katira gum) and study of catalytic activity. Phys E 45:130–134CrossRefGoogle Scholar
  71. Sánchez MP, Boulaiz H, Ortega-Vinuesa JL, Peula-García JM, Aránega A (2012) Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells. Int J Mol Sci 13:4906–4919CrossRefGoogle Scholar
  72. Sankar R, Rahman PKSM, Varunkumar K, Anusha C, Kalaiarasia A, Subramanian K, Shivashangaric KS, Ravikumara V (2017) Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. J Mol Struct 1129:8–16CrossRefGoogle Scholar
  73. Selvi SK, Mahesh J, Sashidhar RB (2017) Anti-proliferative activity of gum kondagogu (Cochlospermum gossypium)-gold nanoparticle constructs on B16F10 melanoma cells: an in vitro model. Bioact Carbohydrates Diet Fibre 11:38–47CrossRefGoogle Scholar
  74. Sermon PA, Bond GC, Wells PB (1979) Hydrogenation of alkenes over supported gold. J Chem Soc Farady Trans 1(75):385–394CrossRefGoogle Scholar
  75. Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett 11:98CrossRefGoogle Scholar
  76. Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett 11:363CrossRefGoogle Scholar
  77. Siddiqi KS, Husen A (2016c) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400CrossRefGoogle Scholar
  78. Siddiqi KS, Husen A (2016d) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nano Res Lett 11:482CrossRefGoogle Scholar
  79. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elements Med Biol 40:10–23CrossRefGoogle Scholar
  80. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92CrossRefGoogle Scholar
  81. Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498CrossRefGoogle Scholar
  82. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  83. Siddiqi KS, Rahman A, Tajuddin HA (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett 13:141CrossRefGoogle Scholar
  84. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231CrossRefGoogle Scholar
  85. Subramanian SB, Bezawada SR, Dhamodharan R (2016) Green, selective, seedless and one-pot synthesis of triangular Au nanoplates of controlled size using bael gum and mechanistic study. ACS Sustain Chem Eng 4:3830–3839CrossRefGoogle Scholar
  86. Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S (2014) Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv 4:24014–24019CrossRefGoogle Scholar
  87. Thanaa IS, Rasha SSE, Suzan AAE (2015) Green synthesis of gold nanoparticles using cumin seeds and gum arabic: studying their photothermal efficiency. Nanosci Nanotechnol 5:89–96Google Scholar
  88. Venkatpurwar V, Shiras A, Pokharkar V (2011) Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int J Pharm 409:314–320PubMedCrossRefPubMedCentralGoogle Scholar
  89. Vieira S, Vial S, Maia FR, Carvahlo M, Reis RL, Granja PL, Oliveira M (2015) Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Adv 5:77996–78005CrossRefGoogle Scholar
  90. Vinod VT, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B Biointerfaces 3:291–298CrossRefGoogle Scholar
  91. Wu CC, Chen DH (2010) Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull 43:234–240CrossRefGoogle Scholar
  92. Wu YL, Li YN, Liu P, Gardner S, Ong BS (2006) Studies of gold nanoparticles as precursors to printed conductive features for thin film transistors. Chem Mater 18:4627–4632CrossRefGoogle Scholar
  93. Zhang Z, Wu Y (2010) Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir 26:9214–9223PubMedCrossRefGoogle Scholar
  94. Zharov VP, Kim JW, Curiel DT, Everts M (2005) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed Nanotechnol Biol Med 1:326–345CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Madhusudhan Alle 
    • 1
    • 2
  • Reddy Ganapuram Bhagavanth 
    • 3
  • Krishana Indana Murali 
    • 1
  1. 1.Department of ChemistrySamskruti College of Engineering & TechnologyKondapur, HyderabadIndia
  2. 2.Department of ChemistryUniversity College of Science, Osmania UniversityHyderabadIndia
  3. 3.Department of ChemistryPalamuru UniversityMahbubnagarIndia

Personalised recommendations