Impact of Nanomaterials on Plant Physiology and Functions

  • Rubbel Singla
  • Avnesh Kumari
  • Sudesh Kumar Yadav


Nanotechnology has opened up novel applications in the field of biotechnology and crop production, as nanomaterials possess unique features such as high surface area and high reactivity as compared to their bulk counterparts. In the recent era, scientists are developing different kinds of nanoparticles (NPs) like metal-based (gold, silver, silicon dioxide, zinc oxide, titanium dioxide, etc.) and carbon-based nanomaterials (carbon nanotubes and fullerenes) to play a great role in plant growth and development. Nanomaterials can behave as “magic bullets” to deliver chemicals or genes (required for proper plant functioning) at the target plant organelles with high specificity in a controlled manner. Exposure of nanomaterials to plants induce many morphological and physiological changes based on several parameters, viz., properties of NPs, chemical composition, surface coating, size, dosage, time of exposure, and many more. However, a complete knowledge regarding the dynamics of NPs interaction with plants and their effect on growth and development is still unclear. The present chapter highlights the key potentials of NPs in plant growth and development in terms of root and shoot growth, seed germination, photosynthesis, and transpiration and summarizes the mechanism of NPs interactions with plants and plant parts. The effect of nanomaterials toxicity on plant species is also discussed.


Nanoparticles Nanoparticle-plant interactions Nanoparticle uptake mechanism Plant growth Phytotoxicity Oxidative stress 



RS is thankful to UGC for awarding a Senior Research Fellowship. Financial support from the Department of Biotechnology (DBT), Government of India, and the Council of Scientific and Industrial Research (CSIR), New Delhi, is also acknowledged.


  1. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles. Environ Toxicol Chem 35:2223–2229PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids: a review. Environ Exp Bot 75:307–324Google Scholar
  4. Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015a) Nanoscale copper in the soil-plant system: toxicity and underlying potential mechanisms. Environ Res 138:306–325CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anjum NA, Sofo A, Scopam A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015b) Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121CrossRefGoogle Scholar
  6. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853CrossRefGoogle Scholar
  7. Aref IM, Khan PR, Khan S, El-Atta H, Ahmed AI, Iqbal M (2016) Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees Struct Funct 30:1669–1681CrossRefGoogle Scholar
  8. Arora S, Sharma P, Kumar S (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  9. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barhoumi L, Oukarroum A, Taher LB, Smiri LS, Abdelmelek H, Dewez D (2015) Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch Environ Contam Toxicol 68(3):510–520PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563:956–964PubMedCrossRefPubMedCentralGoogle Scholar
  12. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919CrossRefGoogle Scholar
  13. Boykov IN, Shuford E, Zhang B (2018) Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics.
  14. Cao Z, Rossi L, Stowers C, Zhang W, Lombardini L, Ma X (2018) The impact of cerium oxide nanoparticles on the physiology of soybean [Glycine max (L.) Merr.] under different soil moisture conditions. Environ Sci Pollut Res 25:930–939CrossRefGoogle Scholar
  15. Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Yue-ie CH, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287CrossRefGoogle Scholar
  16. Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B (2016) Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 10:1–11Google Scholar
  17. Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomater 5(2):851–873CrossRefGoogle Scholar
  18. Choudhury R, Majumder M, Roy DN, Basumallick S, Misra TK (2016) Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. Int Nano Lett 6:153–159CrossRefGoogle Scholar
  19. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants–effects of size and crystalline structure. Chemosphere 90:1083–1090PubMedCrossRefPubMedCentralGoogle Scholar
  20. Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9(12):11737–11749PubMedCrossRefPubMedCentralGoogle Scholar
  21. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285PubMedCrossRefPubMedCentralGoogle Scholar
  22. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119CrossRefGoogle Scholar
  23. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49:3007–3014PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:1CrossRefGoogle Scholar
  25. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  26. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  27. Falco WF, Queiroz AM, Fernandes J, Botero ER, Falcão EA, Guimarães FE, M’Peko JC, Oliveira SL, Colbeck I, Caires AR (2015) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A Chem 299:203–209CrossRefGoogle Scholar
  28. Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22:8549–8558CrossRefGoogle Scholar
  29. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106PubMedCrossRefPubMedCentralGoogle Scholar
  30. Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511PubMedCrossRefGoogle Scholar
  31. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111:239–253PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  34. Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4:301–318PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11Google Scholar
  38. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117CrossRefGoogle Scholar
  39. Hao Y, Yang X, Shi Y, Song S, Xing J, Marowitch J, Chen J, Chen J (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91:457–466CrossRefGoogle Scholar
  40. Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136PubMedCrossRefPubMedCentralGoogle Scholar
  41. He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H (2018) Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res 11:1928–1937CrossRefGoogle Scholar
  42. Hojjat SS, Hojjat H (2016) Effects of silver nanoparticle exposure on germination of Lentil (Lens culinaris Medik.). Int J Farm Allied Sci 5:248–252Google Scholar
  43. Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260PubMedCrossRefGoogle Scholar
  44. Hong J, Rico CM, Zhao L (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes Impacts 17:177–185CrossRefGoogle Scholar
  45. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publication, Cham, pp 455–479CrossRefGoogle Scholar
  46. Husen A, Siddiqi KS (2014a) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28CrossRefGoogle Scholar
  47. Husen A, Siddiqi KS (2014b) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  48. Husen A, Siddiqi KS (2014c) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229CrossRefGoogle Scholar
  49. Hussain M, Raja NI, Iqbal M, Sabir S, Yasmeen F (2017) In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech 7:101PubMedPubMedCentralCrossRefGoogle Scholar
  50. Iannone MF, Groppa MD, de Sousa ME, van Raap MB, Benavides MP (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88CrossRefGoogle Scholar
  51. Iram F, Iqbal MS, Athar MM (2014) Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym 104:29–33PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15:142–153PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jayarambabu N, Kumari BS, Rao KV, Prabhu YT (2014) Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4:3411–3416Google Scholar
  54. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383PubMedCrossRefPubMedCentralGoogle Scholar
  55. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474PubMedCrossRefPubMedCentralGoogle Scholar
  56. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  57. Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2016) Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET Nanobiotechnol 10:171–177PubMedCrossRefPubMedCentralGoogle Scholar
  58. Khataee A, Movafeghi A, Nazari F, Vafaei F, Dadpour MR, Hanifehpour Y, Joo SW (2014) The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. J Nanopart Res 16:1–10CrossRefGoogle Scholar
  59. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806CrossRefGoogle Scholar
  60. Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL, Alvarez PJ, Braam J (2014) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626–632PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kranjc E, Mazej D, Regvar M, Drobne D, Remskar M (2018) Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environ Sci Nano 5:520–532CrossRefGoogle Scholar
  62. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  64. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  65. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. Journal of physics: conference series, IOP Publishing, 304(1), 012057Google Scholar
  66. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1–11Google Scholar
  70. Li P, Song A, Li ZJ, Fan F, Liang Y (2015a) Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 397:289e301CrossRefGoogle Scholar
  71. Li X, Yang Y, Gao B, Zhang M (2015b) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One 10:e0122884PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li H, Ye X, Guo X, Geng Z, Wang G (2016a) Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater 314:188–196PubMedCrossRefPubMedCentralGoogle Scholar
  73. Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016b) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe 2 O 3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedCrossRefPubMedCentralGoogle Scholar
  76. Liu J, Wang FH, Wang LL, Xiao SY, Tong CY, Tang DY, Liu XM (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15:768–773CrossRefGoogle Scholar
  77. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:1–14CrossRefGoogle Scholar
  78. Lopez-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  79. López-Moreno ML, de la Rosa G, Cruz-Jiménez G, Castellano L, Peralta-Videa JR, Gardea-Torresdey JL (2017) Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. Microchem J 134:54–61CrossRefGoogle Scholar
  80. Lv J, Zhang S, Luo L (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77CrossRefGoogle Scholar
  81. Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, Xu Z, Zhang L, Ding Y, Zhao Y, Chai Z (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ma H, Brennan A, Diamond SA (2012) Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ Toxicol Chem 31(9):2099–2107PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  84. Maiti S, El Fahime E, Benaissa M, Brar SK (2015) Nano-ecotoxicology of natural and engineered nanoparticles for plants. In: Brar SK, Zhang TC, Verma M, Surampalli RY, Tyagi RD (eds) Nanomaterials in the environment. American Society of Civil Engineers, USA, pp 469–485Google Scholar
  85. Martinez-Fernandez D, Komárek M (2016) Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ Exp Bot 131:128–136CrossRefGoogle Scholar
  86. Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582CrossRefGoogle Scholar
  87. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049PubMedPubMedCentralCrossRefGoogle Scholar
  88. McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551CrossRefGoogle Scholar
  89. Mehrian SK, Heidari R, Rahmani F, Najafi S (2016) Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. J Clust Sci 27:327–340CrossRefGoogle Scholar
  90. Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254PubMedPubMedCentralGoogle Scholar
  91. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239PubMedCrossRefPubMedCentralGoogle Scholar
  92. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nair PMG, Chung M (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefPubMedCentralGoogle Scholar
  94. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefPubMedCentralGoogle Scholar
  95. Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–435PubMedCrossRefPubMedCentralGoogle Scholar
  96. Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ngo QB, Dao TH, Nguyen HC, Tran XT, Van Nguyen T, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:015016CrossRefGoogle Scholar
  98. Ostiguy C, IRSST (Québec) (2006) Les effets à la santé reliés aux nanoparticules. Rapp Tech R451. IRSSTGoogle Scholar
  99. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135PubMedCrossRefPubMedCentralGoogle Scholar
  100. Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382PubMedCrossRefGoogle Scholar
  101. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  102. Prasad TN, Adam S, Rao PV, Reddy BR, Krishna TG (2016) Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). IET Nanobiotechnol 11:277–285CrossRefGoogle Scholar
  103. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  104. Racuciu M, Creanga DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Rom J Phys 52:395–402Google Scholar
  105. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101CrossRefGoogle Scholar
  107. Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38:1–9CrossRefGoogle Scholar
  108. Rawat S, Pullagurala VL, Hernandez-Molina M, Sun Y, Niu G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environ Sci Nano 5:83–95CrossRefGoogle Scholar
  109. Remédios C, Rosário F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012.: Article ID 751686:8. Scholar
  110. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642PubMedCrossRefPubMedCentralGoogle Scholar
  112. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118PubMedCrossRefPubMedCentralGoogle Scholar
  113. Roy I, Ohulchanskyy TY, Bharali DJ (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A 102:279–284PubMedPubMedCentralCrossRefGoogle Scholar
  114. Santos AR, Miguel AS, Macovei A, Maycock C, Balestrazzi A, Oliva A, Fevereiro P (2013) CdSe/ZnS quantum dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture. BMC Biotechnol 13:111PubMedPubMedCentralCrossRefGoogle Scholar
  115. Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Alwathnani HA, Okla MK, Dwivedi S, Musarrat J, Praveen S (2016) Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: deciphering the role of signaling factors, oxidative stress and cell death. J Environ Sci 47:49–62CrossRefGoogle Scholar
  116. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–critical review. Nanotoxicology 10:257–278PubMedPubMedCentralGoogle Scholar
  117. Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520PubMedCrossRefPubMedCentralGoogle Scholar
  118. Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediments 9:46–53CrossRefGoogle Scholar
  119. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598PubMedCrossRefPubMedCentralGoogle Scholar
  120. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  121. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233CrossRefGoogle Scholar
  122. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  123. Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400CrossRefGoogle Scholar
  124. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92CrossRefGoogle Scholar
  125. Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498CrossRefGoogle Scholar
  126. Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  127. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefPubMedCentralGoogle Scholar
  128. Sillen WM, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22CrossRefGoogle Scholar
  129. Silver J, Ou W (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett 5:1445–1449PubMedCrossRefPubMedCentralGoogle Scholar
  130. Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol 233:84–94PubMedCrossRefPubMedCentralGoogle Scholar
  131. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254PubMedPubMedCentralGoogle Scholar
  132. Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res 23:8539–8545CrossRefGoogle Scholar
  133. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152PubMedCrossRefPubMedCentralGoogle Scholar
  134. Song A, Li P, Fan FL, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high zinc stress. PLoS One 9:e113782PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85:245–257PubMedCrossRefPubMedCentralGoogle Scholar
  136. Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV (2017) Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol 51:7361–7368PubMedCrossRefPubMedCentralGoogle Scholar
  137. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefPubMedCentralGoogle Scholar
  138. Steudle E, Peterson CA (1988) How does water get through roots? J Exp Bot 49:775–788Google Scholar
  139. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91PubMedCrossRefPubMedCentralGoogle Scholar
  140. Tan W, Du W, Barrios AC, Armendariz R, Zuverza-Mena N, Ji Z, Chang CH, Zink JI, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ Pollut 222:64–72PubMedCrossRefPubMedCentralGoogle Scholar
  141. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  142. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefPubMedCentralGoogle Scholar
  143. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263PubMedCrossRefPubMedCentralGoogle Scholar
  144. Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219PubMedCrossRefPubMedCentralGoogle Scholar
  145. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2015) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front Plant Sci 6:1243PubMedPubMedCentralGoogle Scholar
  148. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093PubMedCrossRefPubMedCentralGoogle Scholar
  149. Xia T, Kovochich M, Liong M (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286PubMedPubMedCentralCrossRefGoogle Scholar
  150. Xuming W, Fengqing G, Linglan M, Jie L, Sitao Y, Ping Y, Fashui H (2008) Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biol Trace Elem Res 126:280–289PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefPubMedCentralGoogle Scholar
  153. Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300PubMedCrossRefPubMedCentralGoogle Scholar
  154. Yanik F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:1–13CrossRefGoogle Scholar
  155. Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22:11109–11117CrossRefGoogle Scholar
  156. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY (2012a) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–138PubMedCrossRefPubMedCentralGoogle Scholar
  158. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhu H, Njuguna J (2014) Nanolayered silicates/clay minerals: uses and effects on health. Health Environ Saf Nanomater, Woodhead Publishing Limited:133–146Google Scholar
  161. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefPubMedCentralGoogle Scholar
  162. Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rubbel Singla
    • 1
  • Avnesh Kumari
    • 1
  • Sudesh Kumar Yadav
    • 2
  1. 1.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Center of Innovative and Applied Bioprocessing (CIAB)MohaliIndia

Personalised recommendations