Andrographis paniculata: From Traditional to Nano Drug for Cancer Therapy

  • Rabea Parveen
  • Bushra Parveen
  • Abida Parveen
  • Sayeed Ahmad


Andrographis paniculata (family: Acanthaceae) is used in the Indian, Thai, and Chinese traditional system of medicines since the ancient times to cure fever, common cold, inflammation, upper respiratory tract infection, pharyngitis, laryngitis, tonsillitis, pneumonia, tuberculosis, hepatic impairment, and pyelonephritis. Andrographolide (a diterpenoidal lactone), which is an active bitter principle of this herb, has recently shown anticancer potential against leukemia, breast cancer, lung cancer, and melanoma cells. It also has immunomodulatory properties against cancer cells, but its pharmacodynamic effects are hampered due to its biopharmaceutic properties. The poor aqueous solubility and high hydrophobicity lead to a low oral bioavailability of andrographolide. It is unstable in extreme acidic and alkaline conditions of gastrointestinal tract and has a very short biological half-life, i.e., t½ = 2 h. It is also extremely bitter in taste and hence is called the King of bitters. To overcome these problems, andrographolide is converted into several types of nano delivery systems such as the solid lipid nanoparticles, PLGA nanoparticles, liposomes, micelles, etc. Nanoformulations are attractive for their potential to improve the physicochemical properties and the pharmacokinetics of herbal drugs. The present review elucidates the traditional uses of A. paniculata, use of andrographolide in cancer therapy, and the novel drug delivery systems used to incorporate the drug for improving its biopharmaceutic properties.


Andrographis paniculata Andrographolide Nanomedicine Cancer therapy Nanoformulations 


  1. Adeoye BO, Asenuga ER, Oyagbemi AA, Omobowale TO, Adedapo AA (2018) The protective effect of the ethanol leaf extract of Andrographis paniculata on cisplatin-induced acute kidney injury in rats through nrf2/KIM-1 signaling pathway. Drug Res (Stuttg) 68:23–32CrossRefGoogle Scholar
  2. Akbarsha MA, Manivannan B (1993) Biochemical changes in the testis and male accessory organs of albino rats on treatment with Andrographis paniculata Nees. Indian J Comp Anim Physiol 11:103–108Google Scholar
  3. Akbarsha MA, Manivannan B, Hamid KS, Vijayan B (1990) Antifertility effect of Andrographis paniculata (Nees) in male albino rat. Indian J Exp Biol 28:421–426PubMedPubMedCentralGoogle Scholar
  4. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Ashrafi A (2014) Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis-induced atherosclerosis in rabbits. Naunyn Schmiedeberg’s Arch Pharmacol 387:1141–1152CrossRefGoogle Scholar
  5. Allan JJ, Pore MP, Deepak M, Murali B, Mayachari AS, Agarwal A (2009) Reproductive and fertility effects of an extract of Andrographis paniculata in male wistar rats. Int J Toxicol 28:308–317PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alzaharna M, Alqouqa I, Cheung HY (2017) Taxifolin synergizes andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells. PLoS One 12:e0171325PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anonymous IP (2004) WHO monographs on selected medicinal plants, vol 2. Ministry of Health & Family Welfare, Government of IndiaGoogle Scholar
  8. Anonymous IP (2010) Herbs and herbal products. Ministry of Health & Family Welfare, Government of IndiaGoogle Scholar
  9. Balachandran P, Govindarajan R (2005) Cancer: an ayurvedic perspective. Pharmacol Res 51:19–30PubMedCrossRefPubMedCentralGoogle Scholar
  10. Banerjee M, Parai D, Chattopadhyay S (2017) Andrographolide: antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol (Praha) 62:237–244CrossRefGoogle Scholar
  11. Barilla J (1999) Andrographis paniculata. Keats Publishing, Los Angeles, CA, USAGoogle Scholar
  12. Benoy GK, Animesh DK, Aninda M, Priyanka DK, Sandip H (2012) An overview on Andrographis paniculata (burm. F.) Nees. Int J Res Ayurved Pharm 3:752–760CrossRefGoogle Scholar
  13. Bhaskar Reddy MV, Kishore PH, Rao CV, Gunasekar D, Caux C, Bodo B (2003) New 2′-oxygenated flavonoids from Andrographis affinis. J Nat Prod 66:295–297PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bhatnagar SS, Santapau H, Desa JD, Maniar AC, Ghadially NC, Solomon MJ, Yellore S, Rao TN (1961) Biological activity of Indian medicinal plants. I. Antibacterial, antitubercular and antifungal action. Indian J Med Res 49:799–813PubMedPubMedCentralGoogle Scholar
  15. Burgos RA, Caballero EE, S’anchez NS, Schroeder RA, Wikman GK, Hancke JL (1997) Testicular toxicity assessment of Andrographis paniculata dried extract in rats. J Ethnopharmacol 58:219–224PubMedCrossRefPubMedCentralGoogle Scholar
  16. Burgos RA, Hancke JL, Bertoglio JC, Aguirre V, Arriagada S, Calvo M, Caceres DD (2009) Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: a prospective randomized placebo-controlled trial. Clin Rheumatol 28:931–946PubMedCrossRefPubMedCentralGoogle Scholar
  17. Burkill IH, Birtwistle W, Foxworthy F, Scrivenor J, Watson J (1966) A dictionary of the economic plants of the Malay Peninsula, vol I. Ministry of Agriculture and Cooperative, Kuala Lumpur, MalaysiaGoogle Scholar
  18. C’aceres DD, Hancke JL, Burgos RA, Sandberg F, Wikman GK (1999) Use of visual analogue scale measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of common cold. A randomized double blind-placebo study. Phytomedicine 6:217–223CrossRefGoogle Scholar
  19. Cáceres DD, Hancke JL, Burgos RZ, Wikman GK (1997) Prevention of common colds with Andrographis paniculata dried extract. A pilot double-blind study. Phytomedicine 4:101–104PubMedCrossRefPubMedCentralGoogle Scholar
  20. Calabrese C, Berman SH, Babish, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 14:333–338PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carr RR, Nahata MC (2006) Complementary and alternative medicine for upper-respiratory-tract infection in children. Am J Health Syst Pharm 63:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chadha YR (1985) The wealth of India: raw materials, vol 1A. CSIR, New DelhiGoogle Scholar
  23. Carretta MD, Alarcón P, Jara E, Solis L, Hancke JL, Concha II, Hidalgo MA, Burgos RA (2009) Andrographolide reduces IL-2 production in T-cells by interfering with NFAT and MAPK activation. Eur J Pharmacol 602:413–421PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chan SJ, Wong WS, Wong PT, Bian JS (2010) Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 161:668–679PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chang HM, But PPH (1987) Pharmacology and applications of Chinese Materia Medica, Vol 2, vol 2. World Scientific Publishing Co. Pvt. Ltd, Singapore, pp 918–928CrossRefGoogle Scholar
  26. Chang RS, Ding L, Chen GQ, Pan QC, Zhao ZL, Smith KM (1991) Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus (43225). Proc Soc Exp Biol Med 197:59–66PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chao WW, Kuo YH, Lin BF (2010) Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB transactivation inhibition. J Agric Food Chem 58:2505–2512PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chao WW, Lin BF (2010) Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 5:17PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen Q, Liu Y, Liu YM, Liu GY, Zhang MQ, Jia JY, Lu C, Yu C (2012) Pharmacokinetics and tolerance of dehydroandrographolide succinate injection after intravenous administration in healthy Chinese volunteers. Acta Pharmacol Sin 33:1332–1336PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen Y, Liu Y, Xu J, Xie Y, Zheng Q, Yue P, Yang M (2017) A natural triterpenoid saponin as multifunctional stabilizer for drug nanosuspension powder. AAPS PharmSciTech 18:2744–2753PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chenniappan K, Kadarkarai M (2008) Oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of Andrographis paniculata Nees against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Entomol Res 38:119–125CrossRefGoogle Scholar
  32. Cheung HY, Cheung CS, Kong CK (2001) Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J Chromatogr A 930:171–176PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chopra RN, Nayar SL, Chopra IC, Asolkar LV, Kakkar KK (1956) Glossary of Indian medicinal plants. Council of Scientific & Industrial Research, New DelhiGoogle Scholar
  34. Chua LS (2014) Review on liver inflammation and antiinflammatory activity of Andrographis paniculata for hepatoprotection. Phytother Res 28:1589–1598PubMedCrossRefPubMedCentralGoogle Scholar
  35. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van Lente F, Levey AS (2007) Prevalence of chronic kidney disease in the United States. JAMA 298(17):2038–2047PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dai L, Wang G, Pan W (2017) Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. Biomed Res Int 2017:1Google Scholar
  37. Das S, Pradhan GK, Das S, Nath D, Das Saha K (2015) Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage. Chem Biol Interact 242:281–289PubMedCrossRefPubMedCentralGoogle Scholar
  38. Deng WL (1978) Outline of current clinical and pharmacological research on Andrographis paniculata in China. Newsl Chin Herb Med 10:27–31Google Scholar
  39. Dua VK, Ojha VP, Biswas S, Valecha N, Singh N, Sharma VP (1999) Antimalarial activity of different fractions isolated from the leaves of Andrographis paniculata. J Med Aromat Plant Sci 21:1069–1073Google Scholar
  40. Dymock W (1972) Pharmacographia Indica. e Institute of Health and Tibbi Research, Hamdard National Foundation, KarachiGoogle Scholar
  41. Ebrahimi E, Ebrahimi S (2012) Application of mathematical modeling in production of solvent extraction of a medicinal plant. World Appl Sci J 17:296–300Google Scholar
  42. Edwin ES, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178PubMedCrossRefPubMedCentralGoogle Scholar
  43. Farooqi AA, Sreeramu BS (2001) Cultivation of aromatic and medicinal crop. Universities Press Ltd, HyderabadGoogle Scholar
  44. Gabrielian ES, Shukarian AK, Goukasova GI, Chandanian GL, Panossian AG, Wikman G, Wagner H (2002) A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine 9:589–597PubMedCrossRefPubMedCentralGoogle Scholar
  45. Geng J, Liu W, Xiong Y, Ding H, Jiang C, Yang X, Li X, Elgehama A, Sun Y, Xu Q, Guo W, Gao J (2018) Andrographolide sulfonate improves Alzheimer-associated phenotypes and mitochondrial dysfunction in APP/PS1 transgenic mice. Biomed Pharmaco 97:1032–1039CrossRefGoogle Scholar
  46. Govindarajan M (2011) Evaluation of Andrographis paniculata Burm. f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pac J Trop Med 4:176–181PubMedCrossRefPubMedCentralGoogle Scholar
  47. Graverini G, Piazzini V, Landucci E, Pantano D, Nardiello P, Casamenti F, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC (2018) Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 161:302–313PubMedCrossRefPubMedCentralGoogle Scholar
  48. Guan SP, Kong LR, Cheng C, Lim JC, Wong WS (2011) Protective role of 14-deoxy-11,12-didehydroandrographolide, a noncytotoxic analogue of andrographolide, in allergic airway inflammation. J Nat Prod 74:1484–1490PubMedCrossRefPubMedCentralGoogle Scholar
  49. Guan SP, Tee W, Ng DS, Chan TK, Peh HY, Ho WE, Cheng C, Mak JC, Wong WS (2013) Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity. Br J Pharmacol 168:1707–1718PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guo L, Kang L, Liu X, Lin X, Di D, Wu Y, Kong D, Deng Y, Song Y (2017) A novel nanosuspension of andrographolide: preparation, characterization and passive liver target evaluation in rats. Eur J Pharm Sci 104:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guo SY, Li DZ, Li WS, Fu AH, Zhang LF (1988) Study of the toxicity of andrographolide in rabbits. J Beijing Med Univ 5:422–428Google Scholar
  52. Gupta S, Choudhary MA, Yadava JNS, Srivastava V, Tandon JS (1990) Antidiarrhoeal activity of diterpenes of Andrographis paniculata (kalmegh) against Escherichia coli enterotoxin in in vivo models. Int J Crude Drug Res 28:273–283CrossRefGoogle Scholar
  53. Handa SS, Sharma A (1990) Hepatoprotective activity of andrographolide from Andrographis paniculata against carbon tetrachloride. Indian J Med Res 92:284–292PubMedPubMedCentralGoogle Scholar
  54. Hossain MS, Urbi Z, Sule A, Rahman KMH (2014) Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Sci World J 2014:274905Google Scholar
  55. Huang LY (1987) The effects of andrographolide on experimental blood deficiency of cardiac muscle. Chin Herb Med 18:26–28Google Scholar
  56. Iruretagoyena MI, Tobar JA, Gonz’alez PA, Sepúlveda SE, Figueroa CA, Burgos RA, Hancke JL, Kalergis AM (2005) Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther 312:366–372PubMedCrossRefPubMedCentralGoogle Scholar
  57. Janarthanan S (1990) Antifertility effects of andrographolide in rats. J Ecobiol 2:325–329Google Scholar
  58. Jantan I, Ahmad W, Bukhari SN (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 6:655PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jarukamjorn K, Nemoto N (2008) Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J Health Sci 54:370–381CrossRefGoogle Scholar
  60. Jayakumar T, Hsieh CY, Lee J, Sheu JR (2013) Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid Based Complement Altern Med 2013:846740Google Scholar
  61. Joselin J, Jeeva S (2014) Andrographis paniculata: a review of its traditional uses, phytochemistry and pharmacology. Med Aromat Plants 3:169Google Scholar
  62. Kabeeruddin M (1937) Kitabul Advia, vol 2. Aligarh Barqi Press, DelhiGoogle Scholar
  63. Kabir MH, Hasan N, Rahman MM, Rahman MA, Khan JA, Hoque NT, Bhuiyan MR, Mou SM, Jahan R, Rahmatullah M (2014) A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district. Bangladesh J Ethnobiol Ethnomed 10:19PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kamal R, Gupta RS, Lohiya NK (2003) Plants for male fertility regulation. Phytother Res 17:579–590PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kamal YT, Musthaba SM, Singh M, Parveen R, Ahmad S, Baboota S, Ali I, Siddiqui KM, Zaidi SMA (2012) Development and validation of HPLC method for simultaneous estimation of piperine and guggulsterones in compound Unani formulation (tablets) and a nanoreservoir system. Biomed Chromatogr 26:1183–1190PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kamaraj N, Rajaguru PY, Issac PK, Sundaresan S (2017) Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci 12:353–362CrossRefGoogle Scholar
  67. Khamphaya T, Chansela P, Piyachaturawat P, Suksamrarn A, Nathanson MH, Weerachayaphorn J (2016) Effects of andrographolide on intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats. Eur J Pharmacol 789:254–264PubMedCrossRefPubMedCentralGoogle Scholar
  68. Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, BerlinGoogle Scholar
  69. Kim J, Lee J, Lee YM, Pramanick S, Im S, Kim WJ (2016) Andrographolide-loaded polymerized phenylboronic acid nanoconstruct for stimuli-responsive chemotherapy. J Control Release S0168-3659:31082–31083Google Scholar
  70. King Spalding LLP (2006) Andrographolide derivatives to treat viral infections. US patent 20060333785Google Scholar
  71. Kishore V, Nagendra Y, Anupam B, Gunasekar D, Caux C, Bodo B (2017) Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents. Current Topics in Medicinal Chemistry 17:845–857PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S (2004) Anticancer and immunostimulatory compounds from Aandrographis paniculata. J Ethnopharmacol 92(2–3):291–295PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kumar V, Thakur AK, Chatterjee SS (2014) Perspective of Andrographis paniculata in neurological disorders. Clin Pharmacol Biopharm S2:005CrossRefGoogle Scholar
  74. Kunwar RM, Shrestha KP, Bussmann RW (2010) Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. Journal of Ethnobiology and Ethnomedicine 6:35PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kuppusamy C, Murugan K (2009) Mosquitocidal effect of Andographis paniculata Nees against the malaria vector, Anopheles stephensi Liston (Diptera: culicidae). Int J Integr Biol 5:75–81Google Scholar
  76. Lala S, Nandy AK, Mahato SB, Basu MK (2003) Delivery in vivo of 14-deoxy-11-oxoan- drographolide, an antileishmanial agent, by different drug carriers. Indian J Biochem Biophys 40:169–174PubMedPubMedCentralGoogle Scholar
  77. Li J, Luo L, Wang X, Liao B, Li G (2009) Inhibition of NF-kappaB expression and allergen-induced airway inflammation in a mouse allergic asthma model by andrographolide. Cell Mol Immunol 6:381–385PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li Y, Yan H, Zhang Z, Zhang G, Sun Y, Yu P, Wang Y, Xu L (2015) Andrographolide derivative AL-1 improves insulin resistance through down-regulation of NF-κB signalling pathway. Br J Pharmacol 172:3151–3158PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liao W, Tan WS, Wong WS (2016) Andrographolide restores steroid sensitivity to block lipopolysaccharide/ifn-γ-induced il-27 and airway hyperresponsiveness in mice. J Immunol 196:4706–4712PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lim JC, Chan TK, Ng DS, Sagineedu SR, Stanslas J, Wong WS (2012) Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin Exp Pharmacol Physiol 39:300–310PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lin FL, Wu SJ, Lee SC, Ng LT (2009) Antioxidant, antioedema and analgesic activities of Andrographis paniculata extracts and their active constituent andrographolide. Phytother Res 23:958–964PubMedCrossRefPubMedCentralGoogle Scholar
  82. Lin HC, Lii CK, Chen HC, Lin AH, Yang YC, Chen HW (2018) Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages. Am J Chin Med 46:87–106PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lin TP, Chen SY, Duh PD, Chang LK, Liu YN (2008) Inhibition of the Epstein-Barr virus lytic cycle by andrographolide. Biol Pharm Bull 31:2018–2023PubMedCrossRefPubMedCentralGoogle Scholar
  84. Li YH, Wang MY, Jin R, Guo S, Fan XY, Ma H, Wu LX, Zhang JH (2012) Effects of andrographolide on the expression of eosinophil granulocytes and possible mechanisms. Zhongguo Dang Dai Er Ke Za Zhi. 14:371–374PubMedPubMedCentralGoogle Scholar
  85. Maiti K, Gantait A, Mukherjee K, Saha BP, Mukherjee PK (2006) Therapeutic potentials of andrographolide from Andrographis paniculata: a review. J Nat Remed 6:1–13Google Scholar
  86. Melchior J, Palm S, Wikman G (1997) Controlled clinical study of standardized Andrographis paniculata extract in common cold- a pilot trial. Phytomedicine 3:315–318PubMedCrossRefPubMedCentralGoogle Scholar
  87. Melchior J, Spasov AA, Ostrovskij OV, Bulanov AE, Wikman G (2000) Double-blind, placebo-controlled pilot and phase III study of activity of standardized Andrographis paniculata Herba Nees extract fixed combination (Kan Jang) in the treatment of uncomplicated upper-respiratory tract infection. Phytomedicine 7:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  88. Mishra K, Dash AP, Swain BK et al (2009) Antimalarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J 8:26PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mishra N, Yadav KS, Rai VK, Yadav NP (2017) Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection. AAPS PharmSciTech 18:381–392PubMedCrossRefPubMedCentralGoogle Scholar
  90. Misra P, Pal NL, Guru PY, Katiyar JC, Srivastava V, Tandon JS (1992) Antimalarial activity of Andrographis paniculata (Kalmegh) against Plasmodium berghei NK 65 in Mastomys natalensis. Int J Pharmacogn 30:263–274CrossRefGoogle Scholar
  91. Mittal SP, Khole S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi SS (2016) Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling. Biochim Biophys Acta 1860:2377–2390PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mkrtchyan A, Panosyan V, Panossian A, Wikman G, Wagner H (2005) A phase I clinical study of Andrographis paniculata fixed combination Kan Jang versus ginseng and valerian on the semen quality of healthy male subjects. Phytomedicine 12:403–409PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mondal S, Roy P, Das S, Halder A, Mukherjee A, Bera T (2013) In vitro susceptibilities of wild and drug resistant Leishmania donovani amastigote stages to andrographolide nanoparticle: role of vitamin E derivative TPGS for nanoparticle efficacy. PLoS One 8:e81492PubMedPubMedCentralCrossRefGoogle Scholar
  94. Muluye RA, Bian Y, Alemu PN (2014) Anti-inflammatory and antimicrobial effects of heat-clearing chinese herbs: a current review. J Tradit Complement Med 4:93–98PubMedPubMedCentralCrossRefGoogle Scholar
  95. Naik SR, Hule A (2009) Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata. Planta Med 75:785–791PubMedCrossRefPubMedCentralGoogle Scholar
  96. Niranjan A, Tewari SK, Lehri A (2010) Biological activities of kalmegh (Andrographis paniculata Nees) and its active principles- a review. Indian J Nat Prod Res 1:125–135Google Scholar
  97. Nugroho AE, Andrie M, Warditiani NK, Siswanto E, Pramono S, Lukitaningsih E (2012) Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats. Indian J Pharmacol 44:377–381PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nugroho AE, Rais IR, Setiawan I, Pratiwi PY, Hadibarata T, Tegar M, Pramono S (2014) Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees. Pak J Biol Sci 17:22–31PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ozolua RI, Adejayan A, Aigbe OP, Uwaya DO, Argawal A (2011) Some characteristic relaxant effects of aqueous leaf extract of Andrographis paniculata and andrographolide on Guinea pig tracheal rings. Niger J Physiol Sci 26:119–124PubMedPubMedCentralGoogle Scholar
  100. Panossian A, Kochikian A, Gabrielian E, Muradian R, Stepanian H, Arsenian F, Wagner H (1999) Effect of Andrographis paniculata extract on progesterone in blood plasma of pregnant rats. Phytomedicine 6:157–162PubMedCrossRefPubMedCentralGoogle Scholar
  101. Panraksa P, Ramphan S, Khongwichit S, Smith DR (2017) Activity of andrographolide against dengue virus. Antivir Res 139:69–78PubMedCrossRefPubMedCentralGoogle Scholar
  102. Parixit B, Bharath C, Rajarajeshwari N, Ganapaty S (2012) The genus Andrographis- a review. Int J Pharm Sci 4:1835–1856Google Scholar
  103. Parveen R, Ahmad FJ, Iqbal Z (2013) Potential botanicals for the treatment of breast cancer- pharmaceutical approaches used to increase the absorption of herbal drugs. In: Iqbal M, Ahmad A (eds) Recent trends in medicinal botany. IK International Publishing Company, New Delhi, pp 110–130Google Scholar
  104. Parveen R, Ahmad FJ, Iqbal Z, Samim M, Ahmad S (2014) Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm 40:1206–1212PubMedCrossRefPubMedCentralGoogle Scholar
  105. Parveen R, Baboota S, Ahmad S, Ali J, Ahuja A (2008) Approaches used for oral bioavailability enhancement of herbal drugs. Online J Pharmacol Pharmacokinet 4:18–31Google Scholar
  106. Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S (2011) Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int J Pharm 413:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  107. Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S (2010) Nanoemulsion as a novel carrier for delivery of silymarin against carbon tetrarchloride-induced hepatic damage. Arch Pharmcal Res 34:767–774CrossRefGoogle Scholar
  108. Peng S, Gao J, Liu W, Guo W, Jiang C, Yang X, Xu Q, Sun Y (2016a) Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget 7:80262–80274PubMedPubMedCentralGoogle Scholar
  109. Peng S, Hang N, Liu W, Guo W, Jiang C, Yang X, Xu Q, Sun Y (2016b) Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways. Acta Pharm Sin B 6:205–211PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pholphana N, Rangkadilok N, Saehun J, Ritruechai S, Satayavivad J (2013) Changes in the contents of four active diterpenoids at different growth stages in Andrographis paniculata (Burm.f.) Nees (Chuanxinlian). Chin Med 8:2PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pholphana N, Rangkadilok N, Thongnest S, Ruchirawat S, Ruchirawat M, Satayavivad J (2004) Determination and variation of three active diterpenoids in Andrographis paniculata (Burm.f.) Nees. Phytochem Anal 15:365–371PubMedCrossRefPubMedCentralGoogle Scholar
  112. Phunikhom K, Khampitak K, Aromdee C, Arkaravichien T, Sattayasai J (2015) Effect of Andrographis paniculata extract on triglyceride levels of the patients with hypertriglyceridemia: a randomized controlled trial. J Med Assoc Thail 98:S41–S47Google Scholar
  113. Pramanick S, Banerjee S, Achari B, Mukhopadhyay S (2007) Phytochemicals from the genus Andrographis. In: Govil JN, Singh VK, Bhardwaj R (eds) Recent progress in medicinal plants: phytomedicines. Studium Press LLC, Houston, USA, pp 339–387Google Scholar
  114. Puntawee S, Theerasilp M, Reabroi S, Saeeng R, Piyachaturawat P, Chairoungdua A (2016) Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy. Pharm Dev Technol 21:437–444PubMedPubMedCentralGoogle Scholar
  115. Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS (1993) Immunostimulant agents from Andrographis paniculata. J Nat Prod 56:995–999PubMedCrossRefPubMedCentralGoogle Scholar
  116. Qiao H, Chen L, Rui T, Wang J, Chen T, Fu T, Li J, Di L (2017) Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Int J Nanomed 12:1033–1046CrossRefGoogle Scholar
  117. Qin LH, Kong L, Shi GJ, Wang ZT, Ge BX (2006) Andrographolide inhibits the production of TNF-ǖFC; and interleukin-12 in lipopolysaccharide-stimulated macrophages: role of mitogen-activated protein kinases. Biol Pharm Bull 29:220–224PubMedCrossRefPubMedCentralGoogle Scholar
  118. Radhika P, Prasad YR, Lakshmi KR (2010) Flavones from the stem of Andrographis paniculata Nees. Nat Prod Commun 5:59–60PubMedPubMedCentralGoogle Scholar
  119. Rahman NNNA, Furuta T, Kojima S, Takane K, Ali M (1999) Antimalarial activity of extracts of Malaysian medicinal plants. J Ethnopharmacol 64:249–254CrossRefGoogle Scholar
  120. Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R (2003) Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 3:147–158PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, Chung IM (2018) Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng 41:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rajpal, Singh VK, Dutta BN (2011) Andrographis paniculata: a multicentric, randomized, double-blind homoeopathic pathogenetic trial. Indian J Res Homoeopath 5:8–14Google Scholar
  123. Roy P, Das S, Auddy RG, Saha A, Mukherjee A (2013) Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm Res 30:1252–1262PubMedCrossRefPubMedCentralGoogle Scholar
  124. Roy P, Das S, Auddy RG, Mukherjee A (2014) Engineered andrographolides systems for smart recovery in hepatotoxic conditions. Int J Nanomed 9:4723–4735Google Scholar
  125. Roy P, Das S, Bera T, Mondol S, Mukherjee A (2010) Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine 5:1113–1121PubMedPubMedCentralGoogle Scholar
  126. Sattayasai J, Srisuwan S, Arkaravichien T, Aromdee C (2010) Effects of andrographolide on sexual functions, vascular reactivity and serum testosterone level in rodents. Food Chem Toxicol 48:1934–1938PubMedCrossRefPubMedCentralGoogle Scholar
  127. Saxena RC, Singh R, Kumar P, Yadav SC, Negi MP, Saxena VS, Joshua AJ, Vijayabalaji V, Goudar KS, Venkateshwarlu K, Amit A (2010) A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata (KalmCold) in patients with uncomplicated upper respiratory tract infection. Phytomedicine 17:178–185PubMedCrossRefPubMedCentralGoogle Scholar
  128. Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC (2014) Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 9:61PubMedPubMedCentralCrossRefGoogle Scholar
  129. Seubsasana S, Pientong C, Ekalaksananan T, Thongchai S, Aromdee C (2011) A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med Chem 7:237–244PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sheeja BD, Sindhu D, Ebanasar J, Jeeva S (2012) The larvicidal activity of Andrographis paniculata (Burm. f)Nees against Culex quinquefasciatus Say (Insecta: Diptera-Culicidae), a filarial vector. Asian Pac J Trop Dis 2:S574–S578Google Scholar
  131. Sheeja K, Kuttan G (2006) Protective effect of Andrographis paniculata and andrographolide on cyclophosphamide-induced urothelial toxicity. Integr Cancer Ther 5:244–251PubMedCrossRefPubMedCentralGoogle Scholar
  132. Shen YC, Chen CF, Chiou WF (2000) Suppression of rat neutrophil reactive oxygen species production and adhesion by the diterpenoid lactone andrographolide. Planta Med 66:314–317PubMedCrossRefPubMedCentralGoogle Scholar
  133. Shi G, Zhang Z, Zhang R, Zhang X, Lu Y, Yang J, Zhang D, Zhang Z, Li X, Ning G (2012) Protective effect of andrographolide against concanavalin A-induced liver injury. Naunyn-Schmiedeberg’s Arch Pharmacol 385:69–79CrossRefGoogle Scholar
  134. Singh P, Srivastava MM, Khemani LD (2009) Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats. Ups J Med Sci 114:136–139PubMedPubMedCentralCrossRefGoogle Scholar
  135. Singha PK, Roy S, Dey S (2003) Antimicrobial activity of Andrographis paniculata. Fitoterapia 74:692–694PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sinha J, Mukhopadhyay S, Das N, Basu MK (2000) Targeting of liposomal andrographolide to l. donovani infected macrophages in vivo. Drug Deliv 7:209–213PubMedCrossRefPubMedCentralGoogle Scholar
  137. Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281:29897–29904PubMedCrossRefPubMedCentralGoogle Scholar
  138. Spasov AA, Ostrovskij OV, Chernikov MV, Wikman G (2004) Comparative controlled study of Andrographis paniculata fixed combination, Kan Jang and an Echinacea preparation as adjuvant, in the treatment of uncomplicated respiratory disease in children. Phytother Res 18:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  139. Subramanian R, Asmawi MZ, Sadikun A (2008) In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 55:391–398PubMedPubMedCentralGoogle Scholar
  140. Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, Dogarai BB (2012) Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharm Biol 50:850–856PubMedCrossRefPubMedCentralGoogle Scholar
  141. Tan BK-H, Zhang ACY (2004) Andrographis paniculata and the cardiovascular system. Oxid Stress Dis 14:441–455Google Scholar
  142. Tan WS, Liao W, Zhou S, Wong WS (2017) Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem Pharmacol 139:71–81PubMedCrossRefPubMedCentralGoogle Scholar
  143. Tan WS, Peh HY, Liao W, Pang CH, Chan TK, Lau SH, Chow VT, Wong WS (2016) Cigarette smoke-induced lung disease predisposes to more severe infection with nontypeable Haemophilus influenzae: protective effects of andrographolide. J Nat Prod 79:1308–1315PubMedCrossRefPubMedCentralGoogle Scholar
  144. Tang LIC, Ling APK, Koh RY, Chye SM, Voon KGL (2012) Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med 12:1–10CrossRefGoogle Scholar
  145. Tang T, Targan SR, Li Z.-S, Xu C, Byers VS, Sandborn WJ (2011) Randomised clinical trial: herbal extract HMPL-004 in active ulcerative colitis - a double-blind comparison with sustained release mesalazine. Alimen Pharmacol Therap 33:194–202CrossRefGoogle Scholar
  146. Tapia-Rojas C, Schüller A, Lindsay CB, Ureta RC, Mejías-Reyes C, Hancke J, Melo F, Inestrosa NC (2015) Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo. Biochem J 466:415–430PubMedCrossRefPubMedCentralGoogle Scholar
  147. Thakur AK, Rai G, Chatterjee SS, Kumar V (2016) Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats. Pharm Biol 54:1528–1538PubMedCrossRefPubMedCentralGoogle Scholar
  148. Thamlikitkul V, Theerapong S, Boonroj P, Chantrakul C, Boonroj P, Punkrut W, Ekpalakorn W, Boontaeng N, Taechaiya S, Petcharoen S (1991) Efficacy of Andrographis paniculata nees for pharyngotonsillitis in adults. J Med Assoc Thail 74:437–442Google Scholar
  149. Tu YS, Sun DM, Zhang JJ, Jiang ZQ, Chen YX, Zeng XH, Huang DE, Yao N (2014) Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J Microencapsul 31:307–316PubMedCrossRefPubMedCentralGoogle Scholar
  150. Umar S, Sareer O, Ahad A (2012) Prophylactic and lenitive effects of Andrographis paniculata against common human ailments: an exhaustive and comprehensive reappraisal. J Pharm Res Opin 2:138–162Google Scholar
  151. Valdiani A, Kadir MA, Tan SG, Talei D, Abdullah MP, Nikzad S (2012) Nain-e Havandi Andrographis paniculata present yesterday, absent today: a plenary review on underutilized herb of Iran’s pharmaceutical plants. Mol Biol Rep 39:5409–5424PubMedCrossRefPubMedCentralGoogle Scholar
  152. Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC (2015) Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast 2015:1CrossRefGoogle Scholar
  153. Varma A, Padh H, Shrivastava N (2011) Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med 2011:1CrossRefGoogle Scholar
  154. Verma N, Vinayak M (2008) Antioxidant action of Andrographis paniculata on lymphoma. Mol Biol Rep 35:535–540PubMedCrossRefPubMedCentralGoogle Scholar
  155. Vermelho AB, Supuran CT, Cardoso V, Menezes D, Silva JRA, Ferreira JLP, Amaral ACF, Rodrigues IA (2014) Leishmaniasis: possible new strategies for treatment. In: Claborn DM (ed) Leishmaniasis- trends in epidemiology, diagnosis and treatment. InTech Publisher. Scholar
  156. Voravuthikunchai SP, Limsuwan S (2006) Medicinal plant extracts as anti-Escherichia coli O157:H7 agents and their effects on bacterial cell aggregation. J Food Prot 69:2336–2341PubMedCrossRefPubMedCentralGoogle Scholar
  157. Wang HW, Zhao HY, Xiang SQ (1997) Effects of Andrographis paniculata component on nitric oxide, endothelin and lipid peroxidation in experimental atherosclerotic rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi 17:547–549PubMedPubMedCentralGoogle Scholar
  158. Wang W, Wang J, Dong SF, Liu CH, Italiani P, Sun SH, Xu J, Boraschi D, Ma SP, Qu D (2010) Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin 31:191–201PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wen T, Xu W, Liang L, Li J, Ding X, Chen X, Hu J, Lv A, Li X (2015) Clinical efficacy of andrographolide sulfonate in the treatment of severe hand, foot, and mouth disease (HFMD) is dependent upon inhibition of neutrophil activation. Phytother Res 29:1161–1167PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M (2005) Antiviral properties of ent-labdene diterpenes of Andrographis paniculata Nees, inhibitors of herpes simplex virus type 1. Phytother Res 19:1069–1070PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wong SY, Tan MG, Banks WA, Wong WS, Wong PT, Lai MK (2016) Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes. J Neuroinflamm 13:34CrossRefGoogle Scholar
  162. Woo AY, Waye MM, Tsui SK, Yeung ST, Cheng CH (2008) Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther 325:226–235PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wu Z, Raven PH, Hong DY, Garden MB (1996) Flora of China: cucurbitaceae through valerianaceae with annonaceae and berberidaceae. Science Press, BeijingGoogle Scholar
  164. Xie Y, Ma Y, Xu J, Dan J, Yue P, Wu Z, Yang M, Zheng Q (2016) Roles of cryo/thermal strength for redispersibility of drug nanocrystals: a representative study with andrographolide. Arch Pharm Res 39:1404–1417PubMedCrossRefPubMedCentralGoogle Scholar
  165. Xu J, Ma Y, Xie Y, Chen Y, Liu Y, Yue P, Yang M (2016) Design and evaluation of novel solid self-nanodispersion delivery system for andrographolide. AAPS PharmSciTech 18:1572–1584PubMedCrossRefPubMedCentralGoogle Scholar
  166. Xu Y, Marshall RL, Mukkur TKS (2006) An investigation on the antimicrobial activity of Andrographis paniculata extracts and andrographolide in vitro. Asian J Plant Sci 5:527–530CrossRefGoogle Scholar
  167. Yang PY, Hsieh PL, Wang TH, Yu CC, Lu MY, Liao YW, Lee TH, Peng CY (2017) Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget 8:4196–4207PubMedPubMedCentralGoogle Scholar
  168. Yang T, Shi HX, Wang ZT, Wang CH (2013) Hypolipidemic effects of andrographolide and neoandrographolide in mice and rats. Phytother Res 27:618–623PubMedCrossRefPubMedCentralGoogle Scholar
  169. Yen TL, Hsu WH, Huang SK, Lu WJ, Chang CC, Lien LM, Hsiao G, Sheu JR, Lin KH (2013) A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis. Pharm Biol 51:1150–1157PubMedCrossRefPubMedCentralGoogle Scholar
  170. Yin J, Guo L (1993) Contemporary traditional Chinese medicine. Xie Yuan, BeijingGoogle Scholar
  171. Yoopan N, Thisoda P, Rangkadilok N, Sahasitiwat S, Pholphana N, Ruchirawat S, Satayavivad J (2007) Cardiovascular effects of 14-deoxy-11, 12-didehydroandrographolide and Andrographis paniculata extracts. Planta Med 73:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zaidan MR, Rain AN, Badrul AR, Adlin A, Norazah A, Zakiah I (2005) In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed 22:165–170PubMedPubMedCentralGoogle Scholar
  173. Zhan JY, Wang XF, Liu YH, Zhang ZB, Wang L, Chen JN, Huang S, Zeng HF, Lai XP (2016) Andrographolide sodium bisulfate prevents uv-induced skin photoaging through inhibiting oxidative stress and inflammation. Mediat Inflamm 2016:1CrossRefGoogle Scholar
  174. Zhang C, Gui L, Xu Y, Wu T, Liu D (2013) Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance. Int Immunopharmacol 16:451–456PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zhang CY, Tan BK (1997) Mechanisms of cardiovascular activity of Andrographis paniculata in the anaesthetized rat. J Ethnopharmacol 56:97–101PubMedCrossRefPubMedCentralGoogle Scholar
  176. Zhang J, Li Y, Gao W, Repka MA, Wang Y, Chen M (2014) Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin Drug Deliv 11:1367–1380PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhang T (2000) Advances in the study of Andrographis paniculata (Burm.f.) Nees. Zhong Yao Cai 23:366–368PubMedPubMedCentralGoogle Scholar
  178. Zhang XF, Tan BKH (2000) Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin diabetic rats. Acta Pharmacol Sin 21:1157–1164PubMedPubMedCentralGoogle Scholar
  179. Zhang Z, Jiang J, Yu P et al (2009) Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment. J Transl Med 7:62PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhang M, Xue E, Shao W (2016) Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway. Drug Des Devel Ther 10:3143–3152PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zoha MS, Hussain AH, Choudhury SA (1989) Antifertility effect of Andrographis paniculata in mice. Bangladesh Med Res Counc Bull 15:34–37PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rabea Parveen
    • 1
  • Bushra Parveen
    • 1
  • Abida Parveen
    • 1
  • Sayeed Ahmad
    • 1
  1. 1.School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University)New DelhiIndia

Personalised recommendations