Nanomaterials and Plant Potential: An Overview

  • Azamal Husen
  • Muhammad Iqbal


In the recent years, nanotechnology has come up as a cutting-edge field of science and technology with the potential to revolutionize the technological advances in industry, biomedicine and agriculture. Nanomaterials (NMs) can be synthesized using chemical, physical and biological methods. Of these, the biomaterial-based synthesis is not only cost-effective and eco-friendly but also free from the dependence on high pressure, energy, temperature and lethal chemicals. Nanoparticles (NPs) are crystalline or amorphous, having an extremely small size in the range of 1–100 nm. These particles are derived mainly from carbons, metals, ceramics, lipids, semiconductors and polymeric materials. In the biological methods of NP fabrication, plants as well as microbes (certain algae, fungi, bacteria and viruses) are used as the reducing and/or capping agents. The size, morphology and stability of NMs depend on the method of preparation, nature of solvent, mixing ratio, concentration, pH and temperature of reaction mixture and the strength of reducing agent. These particles are then characterized by using various techniques including UV-vis, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, dynamic light scattering and zeta potential measurements, among others. The NMs thus produced have shown significant application in various sectors including those of agri-food (carbon, fullerene, Ag, ZnO), cosmetics (TiO2, ZnO, fullerene, Fe2O3 Cu, Ag, Au), catalysts (NiO, Pt, Pd) lubricants and fuel additives (CeO2, Pt, MoS3), paints and coatings (TiO2, SiO2, Ag, CdSe), agrochemicals (SiO2), food packaging (Ag, TiO2, ZnO, TiN, nanoclay), nanomedicine and nanocarriers (Au, Ag, Fe, magnetic materials). Recent studies have also shown that the plant-mediated fabricated NPs are more efficient in attaching pharmacologically active substances or residues and hence are therapeutically more effective than those produced by physico-chemical means. This chapter highlights the current advances in the development of nanotechnology, with special emphasis on NP synthesis, factors affecting this process, plant-NP interaction and the future prospects of plant-based nanomaterials.


Metal NPs Metal oxide NPs Carbon Fullerene Biosynthesis Plant potential 


  1. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  2. Ahamed M, AlSaalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akhavan O, Ghaderi E (2012) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205:219–223CrossRefGoogle Scholar
  4. Ali SM, Yousef NMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater 2015:218904Google Scholar
  5. Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anand R, Kulothungan S (2014) Silver mediated bacterial nanoparticles as seed dressing against crown rot pathogen of groundnut. Arch Appl Sci Res 6:109–113Google Scholar
  7. Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil-plant system: toxicity and underlying potential mechanisms. Environ Res 138:306–325PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem 5:1–23CrossRefGoogle Scholar
  9. Arokiyaraj S, Saravanan M, Udaya Prakash NK (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mat Res Bull 48:3323–3327CrossRefGoogle Scholar
  10. Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:963609CrossRefGoogle Scholar
  11. Asha-Rani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  12. Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  13. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310Google Scholar
  14. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefPubMedCentralGoogle Scholar
  15. Barrett CS, Cohen JB, Faber J, Jenkins R, Leyden DE, Russ JC, Predecki PK (1986) Advances in X-ray analysis, vol 29. Plenum Press, New YorkGoogle Scholar
  16. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  17. Boro RC, Kaushal J, Nangia Y, Wangoo N, Bhasinc A, Suri CR (2011) Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst 136:2125–2130CrossRefGoogle Scholar
  18. Brice-Profeta S, Arrio MA, Troncetal E (2005) Magneticorderin ǖFE;-Fe2O3 nanoparticles: a XMCD study. J Magne Magne Mat 288:354–365CrossRefGoogle Scholar
  19. Cao YC (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80:1536–1540CrossRefGoogle Scholar
  20. Chauhan RPS, Gupta C, Prakash D (2012) Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 7:6–10Google Scholar
  21. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen Z, Meng HA, Xing GM, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen T, Wong YS, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Coll Surf B 67:26–31CrossRefGoogle Scholar
  24. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45PubMedPubMedCentralCrossRefGoogle Scholar
  25. de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561PubMedCrossRefPubMedCentralGoogle Scholar
  26. De Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, van der Meeren P, van Laethem M (1991) Particle sizing by photon correlation spectroscopy. Part I. Monodisperse latices. Influence of scattering angle and concentration of dispersed material. Part Part Sys Charact 8:179–186CrossRefGoogle Scholar
  27. Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nanoaluminum: transport through sand columns and environmental effects on plant and soil communication. Environ Res 106:296–303PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663CrossRefGoogle Scholar
  29. Duman F, Ismail Ocsoy I, Kup FO (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Engg C 60:333–338CrossRefGoogle Scholar
  30. Ekimov AI, Onuschchenko AA (1981) Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett 34:345–348Google Scholar
  31. El-Rahman AFA, Mohammad TGM (2013) Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J Appl Sci Res 9:6437–6440Google Scholar
  32. Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57CrossRefGoogle Scholar
  33. Eric D (1987) Engines of creation: the coming area of nanotechnology. Anchor Library of ScienceGoogle Scholar
  34. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  35. FAO (2009) How to feed the world in 2050. FAO Report Oct. 2009, pp 1–35Google Scholar
  36. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37CrossRefGoogle Scholar
  37. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  38. Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup – a Roman nanotechnology. Gold Bull 40:270–277CrossRefGoogle Scholar
  39. Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202CrossRefGoogle Scholar
  40. Grillo R, Pereira AES, Nishisaka CS, Lima RD, Oehlke K, Greiner R, Leonardo F, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide. An environmentally safer alternative for weed control. J Hazard Mater 278:163–171PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR (2014) Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 11:2734–2744PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:13001CrossRefGoogle Scholar
  43. Hafez EE, Hassan HS, Elkady M, Salama E (2014) Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int J Sci Technol Res 3:318–324Google Scholar
  44. Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS (2012) Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf B Biointerfaces 97:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedPubMedCentralCrossRefGoogle Scholar
  46. Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  47. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L, Liu T (2013) A core crosslinked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci 13:954–965PubMedCrossRefPubMedCentralGoogle Scholar
  50. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479Google Scholar
  51. Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  52. Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229PubMedPubMedCentralCrossRefGoogle Scholar
  53. Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28CrossRefGoogle Scholar
  54. Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Braz J Bot 37:217–227CrossRefGoogle Scholar
  55. Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429Google Scholar
  56. Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186CrossRefGoogle Scholar
  57. Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agri Food Sec 7:44CrossRefGoogle Scholar
  58. Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:40:94–104Google Scholar
  59. Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877Google Scholar
  60. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14:131–144CrossRefGoogle Scholar
  62. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  63. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  64. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharma J 25:443–447CrossRefGoogle Scholar
  66. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  67. Jung JH, Cheol OH, Soo NH, Ji JH, Soo KS (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670CrossRefGoogle Scholar
  68. Kaida T, Kobayashi K, Adachi M, Suzuki F (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55:219–220PubMedPubMedCentralGoogle Scholar
  69. Kang T, Wang F, Lu L, Zhang Y, Liu T (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensors Actuators B Chem 145:104–109CrossRefGoogle Scholar
  70. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  71. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365CrossRefGoogle Scholar
  72. Khadri H, Alzohairy M, Janardhan A, Kumar AP, Narasimha G (2013) Green synthesis of silver nanoparticles with high fungicidal activity from olive seed extract. Adv Nanopart 2:241–246CrossRefGoogle Scholar
  73. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedCrossRefPubMedCentralGoogle Scholar
  74. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  75. Kim DY, Saratale RG, Shinde S, Syed A, Ameen F, Ghodake G (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918CrossRefGoogle Scholar
  76. Klug HP, Alexander LE (1974) X-ray diffraction procedures for poly-crystallite and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  77. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Fela MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  78. Kot M, Major Ł, Lackner JM, Chronowska-Przywara K, Janusz M, Rakowski W (2016) Mechanical and tribological properties of carbon-based graded coatings. J Nanomater 2016:1–14CrossRefGoogle Scholar
  79. Laware S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3:874–881Google Scholar
  80. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefPubMedCentralGoogle Scholar
  81. Leonhardt U (2007) Optical metamaterials: invisibility cup. Nat Photon 1:207–208CrossRefGoogle Scholar
  82. Lidén G (2011) The European Commission tries to define nanomaterials. Ann Occup Hyg 55:1–5PubMedPubMedCentralGoogle Scholar
  83. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefPubMedCentralGoogle Scholar
  84. Liu J, Qiao SZ, Hu QH (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443PubMedCrossRefPubMedCentralGoogle Scholar
  85. Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mahmoud WMM, Rastogi T, Kümmerer K (2017) Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr Opin Green Sust Chem 6:1–10Google Scholar
  87. Mallakpour S, Sirous F (2015) Surface coating of α-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Prog Org Coat 85:138–145CrossRefGoogle Scholar
  88. McWilliams A (2018) Nanocomposites, nanoparticles, nanoclays and nanotubes: global markets to 2022. BCC Research Report Overview (June 2018), pp 1–7Google Scholar
  89. Min Y, Li J, Liu F, Yeow EK, Xing B (2014) NIR light mediated photoactivation pt based antitumor prodrug and simultaneous cellular apoptosis imaging via upconversion nanoparticles. Angew Chem Int Ed Engl 53:1012–1016PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of Agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471PubMedPubMedCentralGoogle Scholar
  91. Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mucalo MR, Bullen CR, Manley-Harris M, McIntire TM (2002) Arabinogalactan from the Western larch tree: a new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mat Sci 37:493–504CrossRefGoogle Scholar
  93. Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang J, Wang L, Nicoletti M, Benelli G (2015) Aristolochia indica green synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi. Res Vet Sci 102:127–135PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nagajyothi PC, Muthuraman P, Sreeknath TVM, Kim DH, Shim J (2017) Anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225CrossRefGoogle Scholar
  95. Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:912342CrossRefGoogle Scholar
  96. Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Mol Catal A Chem 396:297–303CrossRefGoogle Scholar
  97. Nava OJ, Soto-Robles CA, Góomez-Gutiérreza CM, Vilchis-Nestor AR, Castro-Beltrán A, Olivas A, Luque PA (2017) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6CrossRefGoogle Scholar
  98. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ngo QB, Dao TH, Nguyen HC, Tran XT, Nguten TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7CrossRefGoogle Scholar
  100. Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nhan LV, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B (2016) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front Plant Sci 6:1263PubMedPubMedCentralGoogle Scholar
  102. O’Brien SC, Heath JR, Curl RF, Smalley RE (1988) Photophysics of buckminsterfullerene and other carbon cluster ions. J Chem Phys 88:220CrossRefGoogle Scholar
  103. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord Chem Rev 353:1–57CrossRefGoogle Scholar
  105. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42CrossRefGoogle Scholar
  106. Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S (2014) Sequential application of a cytotoxic nanoparticle and a PI3 K inhibitor enhances antitumor efficacy. Cancer Res 74:675–685PubMedCrossRefGoogle Scholar
  107. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  108. Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215PubMedCrossRefGoogle Scholar
  109. Periasamy VS, Alshatwi AA (2013) Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Basic Clin Pharmacol Toxicol 112:374–384PubMedCrossRefPubMedCentralGoogle Scholar
  110. Poinern GEJ (2014) A laboratory course in nanoscience and nanotechnology, 1st edn. CRC Press Taylor & Francis, Boca RatonGoogle Scholar
  111. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580PubMedPubMedCentralCrossRefGoogle Scholar
  112. Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, Xiao D, He H (2016) Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J Chem 4480:4480–4491CrossRefGoogle Scholar
  113. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955CrossRefGoogle Scholar
  114. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  115. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rawat MK, Jain A, Singh S, Mehnert W, Thunemann AF, Souto EB, Mehta A, Vyas SP (2011) Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci 100:2366–2378PubMedCrossRefPubMedCentralGoogle Scholar
  117. Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592:119–137PubMedCrossRefPubMedCentralGoogle Scholar
  118. Roldán MV, Pellegri N, de Sanctis O (2013) Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanopart 2013:524150CrossRefGoogle Scholar
  119. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, Xiang Z, Hao Y, Rui Y, Cao W, Xing B (2018) Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng 5:6557–6567CrossRefGoogle Scholar
  121. Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299CrossRefGoogle Scholar
  122. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3CrossRefGoogle Scholar
  123. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed Nanotechnol Biol Med 12:701–710CrossRefGoogle Scholar
  124. Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance Solanum lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990CrossRefGoogle Scholar
  125. Shao W, Nabb D, Renevier N, Sherrington I, Luo JK (2012) Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. IOP Conf Ser Mater Sci Eng 40:12043CrossRefGoogle Scholar
  126. Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98PubMedPubMedCentralCrossRefGoogle Scholar
  127. Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363PubMedPubMedCentralCrossRefGoogle Scholar
  128. Siddiqi KS, Husen A (2016c) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400PubMedPubMedCentralCrossRefGoogle Scholar
  129. Siddiqi KS, Husen A (2016d) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482PubMedPubMedCentralCrossRefGoogle Scholar
  130. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23PubMedCrossRefGoogle Scholar
  131. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  132. Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498PubMedPubMedCentralCrossRefGoogle Scholar
  133. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  134. Siddiqi KS, Rahman A, Tajuddin, Husen A (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett 13:141CrossRefGoogle Scholar
  135. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231CrossRefGoogle Scholar
  136. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407CrossRefGoogle Scholar
  137. Soares C, Branco-Neves S, de-Sousa A, Pereira R, Fidalgo F (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  139. Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654PubMedCrossRefPubMedCentralGoogle Scholar
  141. Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170:547–554PubMedPubMedCentralCrossRefGoogle Scholar
  142. Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833PubMedCrossRefPubMedCentralGoogle Scholar
  143. Stoimenov PK, Klinger RL, Marchin RL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  144. Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279CrossRefGoogle Scholar
  145. Syu Y, Hung J, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  146. Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318CrossRefGoogle Scholar
  147. Thomas S, Harshita BSP, Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21:6165–6188PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411CrossRefGoogle Scholar
  149. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J 4:e2589PubMedCrossRefPubMedCentralGoogle Scholar
  150. Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553–1558PubMedPubMedCentralGoogle Scholar
  151. Uddin I, Poddar P, Kumar U, Phogat N (2013) A novel microbial bio-milling technique for the size reduction of micron sized Gd2O3 particles into nanosized particles. J Green Sci Tech 1:48–53CrossRefGoogle Scholar
  152. Umar S, Anjum NA, Ahmad P, Iqbal M (2018) Drought-induced changes in growth, photosynthesis, and yield traits in mungbean: Role of potassium and sulfur nutrition. In: Ozturk M, Hakeem KR, Ashraf M (eds) Crop production technologies for sustainable use and conservation: physiological and molecular advances. Apple Academic Press, Waretown, NJ, pp 79–89Google Scholar
  153. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2016) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  154. Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65:992–997PubMedPubMedCentralCrossRefGoogle Scholar
  155. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172CrossRefGoogle Scholar
  156. Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Paradiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18PubMedCrossRefGoogle Scholar
  157. Wang JJ, Sanderson BJ, Wang H (2007) Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106PubMedCrossRefPubMedCentralGoogle Scholar
  158. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wang J, Wang X, Song Y, Zhu C, Wang K, Guo Z (2013) Detecting and delivering platinum anticancer drugs using fluorescent maghemite nanoparticles. Chem Commun (Camb) 49:2786–2788CrossRefGoogle Scholar
  160. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wolf R, Matz H, Orion E, Lipozencic J (2003) Sunscreens–the ultimate cosmetic. Acta Dermatovenerol Croat 11:158–162PubMedPubMedCentralGoogle Scholar
  162. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501Google Scholar
  163. Yousuf PY, Ahmad A, Hemant, Ganie AH, Aref IM, Iqbal M (2015) Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pak J Bot 47(5):1629–1639Google Scholar
  164. Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604Google Scholar
  165. Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112CrossRefGoogle Scholar
  166. Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43:2905–2910PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc 133:18931–18939PubMedCrossRefPubMedCentralGoogle Scholar
  168. Zhao G, Song S, Wang C, Wu Q, Wang Z (2011) Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal Chim Acta 708:155–159PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zheng Y, Sache L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114–119PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zur Mühlen A, Zur Mühlen E, Niehus H, Mehnert W (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13:1411–1416PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Azamal Husen
    • 1
  • Muhammad Iqbal
    • 2
  1. 1.Department of BiologyCollege of Natural and Computational Sciences, University of GondarGondarEthiopia
  2. 2.Department of Botany, Faculty of ScienceJamia Hamdard (Deemed University)New DelhiIndia

Personalised recommendations