Advertisement

Comb-Shaped Slit Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens

  • Mahdi Moosazadeh
Chapter

Abstract

A design of antipodal Vivaldi antenna (AVA) with high gain at low frequencies is presented in this chapter. It consists of comb-shaped slits in edges of the top and bottom radiators to lower cut-off frequency of conventional AVA and to enhance antenna gain at low frequencies. The proposed antenna has impedance bandwidth of 1.65–18 GHz, high gain at low frequencies (6.7 dB at 1.65 GHz and 9.1 dB at 2 GHz) and front-to-back ratio of 42 dB at 13.5 GHz. The capability of the proposed AVA for UWB imaging for the purpose of the detection of voids inside a concrete beam is demonstrated. Extended results of microwave imaging of voids inside concrete at different standoff distances between the proposed antenna and the surface of concrete are also provided.

Keywords

Antipodal Vivaldi antenna UWB High gain High front-to-back ratio Standoff distance Void Concrete beam Microwave imaging 

References

  1. Ba, H. C., Shirai, H., & Ngoc, C. D. (2014). Analysis and design of antipodal Vivaldi antenna for UWB applications. In 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE). IEEE, pp. 391–394.Google Scholar
  2. Bayat, A., & Mirzakhani, R. (2012). A parametric study and design of the Balanced Antipodal Vivaldi Antenna (BAVA). Session 2P8 Mobile Antennas, Printed Antennas, and Array Antennas, 452.Google Scholar
  3. Che, Y., Li, K., Hou, X., & Tian W. (2010). Simulation of a small sized antipodal Vivaldi antenna for UWB applications. In 2010 IEEE International Conference on Ultra-Wideband (ICUWB). IEEE, pp. 1–3.Google Scholar
  4. Chu, H. B., Shirai, H., & Dao, C. N. (2015). Effect of curvature of antipodal structure on Vivaldi antennas. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2331–2332.Google Scholar
  5. Dastranj, A. (2015). Wideband antipodal Vivaldi antenna with enhanced radiation parameters. IET Microwaves, Antennas and Propagation, 9, 1755–1760.CrossRefGoogle Scholar
  6. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. Antennas and Wireless Propagation Letters, IEEE, 14, 1334–1337.CrossRefGoogle Scholar
  7. Hong, H., Ahn, J., Jeong, J.-G., & Yoon, Y. J. (2015). Gain enhancement technique for an antipodal Vivaldi antenna. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2343–2344.Google Scholar
  8. Hood, A. Z., Karacolak, T., & Topsakal, E. (2008). A small antipodal Vivaldi antenna for ultrawideband applications. Antennas and Wireless Propagation Letters, IEEE, 7, 656–660.CrossRefGoogle Scholar
  9. Hu, S., Dou, W., & Law, C. (2009). A tapered slot antenna with flat and high gain for ultrawideband applications. Journal of Electromagnetic Waves and Applications, 23, 723–728.CrossRefGoogle Scholar
  10. Huang, T.-J., & Hsu, H.-T. (2011). Antipodal dual exponentially tapered slot antennas (DETSA) with corrugations for front-to-back ratio improvement. In 2011 IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM). IEEE, pp. 48–51Google Scholar
  11. Kota, K., & Shafai, L. (2011). Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna. Electronics Letters, 47, 1.CrossRefGoogle Scholar
  12. Lamensdorf, D., & Susman, L. (1994). Baseband-pulse-antenna techniques. IEEE Antennas and Propagation Magazine, 36, 20–30.CrossRefGoogle Scholar
  13. Li, E., Wang, C., & Guo, G. (2017). Radiation enhanced Vivaldi antenna with double-antipodal structure. IEEE Antennas and Wireless Propagation Letters, 16, 561–564.CrossRefGoogle Scholar
  14. Mehdipour, A., Mohammadpour-Aghdam, K., & Faraji-Dana, R. (2007). Complete dispersion analysis of Vivaldi antenna for ultra wideband applications. Progress in Electromagnetics Research, 77, 85–96.CrossRefGoogle Scholar
  15. Moosazadeh, M., & Kharkovsky, S. (2015, October 4–7). Design of ultra-wideband antipodal Vivaldi antenna for microwave imaging applications. In 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–4.Google Scholar
  16. Moosazadeh, M., Kharkovsky, S., Case, J. T., & Samali, B. (2017). Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications. IET Microwaves, Antennas and Propagation, 11(6), 796–803.CrossRefGoogle Scholar
  17. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.CrossRefGoogle Scholar
  18. Natarajan, R., George, J. V., Kanagasabai, M., Lawrance, L., Moorthy, B., Rajendran, D. B., & Alsath, M. G. N. (2016). Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microwaves, Antennas and Propagation, 10(4), 401–405.CrossRefGoogle Scholar
  19. Oktafiani, F., Amrullah, Y., Saputera, Y., Wahyu, Y., & Wijayanto, Y. (2015). Analysis of corrugated edge variations on balanced antipodal Vivaldi antennas. In 2015 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). IEEE, pp. 1–5.Google Scholar
  20. Ren, F.-C., Zhang, F.-S., Chen, B., & Zhou, Q.-C. (2011). Compact tapered slot antenna for wideband applications. In 2011 IEEE CIE International Conference on Radar (Radar). IEEE, pp. 1161–1163.Google Scholar
  21. Siddiqui, J., Antar, Y., Freundorfer, A., Smith, E., Morin, G., & Thayaparan, T. (2011). Design of an ultrawideband antipodal tapered slot antenna using elliptical strip conductors. IEEE Antennas and Wireless Propagation Letters, 10, 251–254.CrossRefGoogle Scholar
  22. Wang, Y.-W., Wang, G.-M., & Zong, B.-F. (2013). Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas and Wireless Propagation Letters, 12, 1380–1383.CrossRefGoogle Scholar
  23. Yang, L., Guo, H., Liu, X., Du, H., & Ji, G. (2010). An antipodal Vivaldi antenna for ultra-wideband system. In 2010 IEEE International Conference on Ultra-Wideband (ICUWB). IEEE, pp. 1–4.Google Scholar
  24. Ying, Q., & Dou, W. (2013). Simulation of two compact antipodal Vivaldi antennas with Radiation Characteristics enhancement. In 2013 Proceedings of the International Symposium on Antennas & Propagation (ISAP). IEEE, pp. 523–526.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdi Moosazadeh
    • 1
  1. 1.Center for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations