Advertisement

Miniaturised Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens

  • Mahdi Moosazadeh
Chapter

Abstract

A miniaturised antipodal Vivaldi antenna (AVA) with a minimum operating frequency of 1 GHz and wide operating frequency band from 1 to 30 GHz is presented in this chapter. It includes bending technique on inner edges of radiators to lower operating frequency band to 1 GHz. Regular slits have been employed in edges of radiators to enhance gain at low frequencies. The half-elliptical shaped dielectric lens as an extension of substrate has been used to further enhance antenna gain. The proposed antenna has been applied for microwave imaging of high-loss materials such as concrete. The capability of the proposed antenna for UWB imaging has been demonstrated for the detection of voids inside concrete.

Keywords

Antipodal Vivaldi antenna Dielectric lens High gain Wide bandwidth Miniaturised antenna Microwave imaging High-loss material Concrete beam Void 

References

  1. Abbosh, A. M. (2009). Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance. IEEE Antennas and Wireless Propagation Letters, 8, 690–692.CrossRefGoogle Scholar
  2. Ashraf, M. A., Jamil, K., Sebak, A., Shoaib, M., Alhekail, Z., Alkanhal, M., & Alshebeili, S. (2015b). Modified antipodal Vivaldi antenna with shaped elliptical corrugation for 1–18 GHz UWB Application. Applied Computational Electromagnetics Society Journal, 30(1), 68–77.Google Scholar
  3. Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.CrossRefGoogle Scholar
  4. Cao, Y., Lei, J., Wei, Y., & Zhu, L. (2014). A compact BAVA design with corrugated edge. In 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, pp. 259–262.Google Scholar
  5. Chamaani, S., Mirtaheri, S. A., & Abrishamian, M. S. (2011). Improvement of time and frequency domain performance of antipodal Vivaldi antenna using multi-objective particle swarm optimization. IEEE Transactions on Antennas and Propagation, 59, 1738–1742.CrossRefGoogle Scholar
  6. Chu, H. B., Shirai, H., & Dao, C. N. (2015). Effect of curvature of antipodal structure on Vivaldi antennas. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2331–2332.Google Scholar
  7. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.CrossRefGoogle Scholar
  8. Fei, P., Jiao, Y.-C., Hu, W., & Zhang, F.-S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130.CrossRefGoogle Scholar
  9. Herzi, R., Gharbi, R., Zairi, H., & Gharsallah, A. (2013, March 18–21). A tuneable antipodal Vivaldi antenna for UWB application. In 2013 10th International Multi Conference on Systems, Signals & Devices (SSD), pp. 1–4.Google Scholar
  10. Huang, T.-J. & Hsu, H.-T. (2011). Antipodal dual exponentially tapered slot antennas Antipodal dual exponentially tapered slot antennas (DETSA) with corrugations for front-to-back ratio improvement. In 2011 IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM). IEEE, pp. 48–51.Google Scholar
  11. In, D. M., Lee, M. J., Kim, D., Oh, C. Y., & Kim, Y. S. (2012). Antipodal linearly tapered slot antenna using unequal half-circular defected sides for gain improvements. Microwave and Optical Technology Letters, 54, 1963–1965.CrossRefGoogle Scholar
  12. Karahan, M., & Armagan Sahinkaya, D. S. (2014). A reduced size antipodal Vivaldi antenna design for wideband applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 1588–1589.Google Scholar
  13. Lee, D.-H., Yang, H.-Y., & Cho, Y.-K. (2012). Tapered slot antenna with band-notched function for ultrawideband radios. IEEE Antennas and Wireless Propagation Letters, 11, 682–685.CrossRefGoogle Scholar
  14. Millard, S., Shaari, A., & Bungey, J. (2002). Field pattern characteristics of GPR antennas. NDT and E International, 35, 473–482.CrossRefGoogle Scholar
  15. Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.CrossRefGoogle Scholar
  16. Moosazadeh, M., & Kharkovsky, S. (2015b). Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members. Microwave and Optical Technology Letters, 57, 1573–1578.CrossRefGoogle Scholar
  17. Moosazadeh, M., & Kharkovsky, S. (2016). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555.CrossRefGoogle Scholar
  18. Moosazadeh, M., Kharkovsky, S., & Case, J.T. (2016). Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials. IET Microwaves, Antennas and Propagation, 10(3), 301–309.CrossRefGoogle Scholar
  19. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.CrossRefGoogle Scholar
  20. Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.CrossRefGoogle Scholar
  21. Pandey, G., Verma, H., & Meshram, M. (2015). Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 51, 308–310.CrossRefGoogle Scholar
  22. Schaubert, D. H., Kollberg, E. L., Korzeniowski, T. L., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33, 1392–1400.CrossRefGoogle Scholar
  23. Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.CrossRefGoogle Scholar
  24. Wang, P., Zhang, H., Wen, G., & Sun, Y. (2012). Design of modified 6-18 GHz balanced antipodal Vivaldi antenna. Progress in Electromagnetics Research C, 25, 271–285.CrossRefGoogle Scholar
  25. Wang, Z., Yin, Y., Wu, J., & Lian, R. (2016). A miniaturized CPW-fed antipodal Vivaldi antenna with enhanced radiation performance for wideband applications. IEEE Antennas and Wireless Propagation Letters, 15, 16–19.Google Scholar
  26. Wu, J., Zhao, Z., Nie, Z., & Liu, Q.-H. (2014). A printed UWB Vivaldi antenna using stepped connection structure between slot-line and tapered patches. IEEE Antennas and Wireless Propagation Letters, 13, 698–701.CrossRefGoogle Scholar
  27. Zhang, Q., Fu, L., Shi, S., Xu, J., & Wei, G. (2012). A miniaturized fermi TSA with improved radiation characteristics For UWB Application. In 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, pp. 1–4.Google Scholar
  28. Zhu, F., Gao, S., Ho, A. T., Abd-Alhameed, R. A., See, C. H., Li, J., & Xu, J. (2012). Miniaturized tapered slot antenna with signal rejection in 5–6-GHz band using a balun. IEEE Antennas and Wireless Propagation Letters, 11, 507–510.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdi Moosazadeh
    • 1
  1. 1.Center for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations