Advertisement

Antipodal Vivaldi Antenna with Regular Triangular Shaped Slits for Microwave Imaging of Concrete Materials and Structures

  • Mahdi Moosazadeh
Chapter

Abstract

A novel technique for design of antipodal Vivaldi antenna (AVA) in order to lower the low end of frequency band to be applied for imaging of concrete-based specimens is presented in this chapter. To extend the low end of frequency band of the conventional antenna, inner edges of the top and bottom radiators of the antenna have been bent. To enhance gain at lower frequencies, regular triangular slit technique was applied to the antenna. Finally, applicability of the proposed antenna for UWB imaging of construction materials and structures for non-destructive testing and evaluation of concrete-based specimens is demonstrated to highlight the capability of the proposed antenna with the imaging system for the detection of flaws such as void inside construction materials with high-range resolution (e.g. a few millimetres in concrete) and deep penetration depth and propagation path (e.g. more than 200 mm in two ways in concrete).

Keywords

Antipodal Vivaldi antenna UWB High-loss material Detection of flaws Void Penetration depth High-range resolution Plastic pipe Microwave imaging 

References

  1. Abbosh, A. M. (2009). Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance. IEEE Antennas and Wireless Propagation Letters, 8, 690–692.CrossRefGoogle Scholar
  2. Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.CrossRefGoogle Scholar
  3. Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58, 2318–2326.CrossRefGoogle Scholar
  4. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.CrossRefGoogle Scholar
  5. Fei, P., Jiao, Y.-C., Hu, W., & Zhang, F.-S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130.CrossRefGoogle Scholar
  6. Lee, D.-H., Yang, H.-Y., & Cho, Y.-K. (2012). Tapered slot antenna with band-notched function for ultrawideband radios. IEEE Antennas and Wireless Propagation Letters, 11, 682–685.CrossRefGoogle Scholar
  7. Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.CrossRefGoogle Scholar
  8. Moosazadeh, M., & Kharkovsky, S. (2015a, October 4–7). Design of ultra-wideband antipodal Vivaldi antenna for microwave imaging applications. In 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–4.Google Scholar
  9. Moosazadeh, M., & Kharkovsky, S. (2015b). Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members. Microwave and Optical Technology Letters, 57, 1573–1578.CrossRefGoogle Scholar
  10. Moosazadeh, M., & Kharkovsky, S. (2016). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555.CrossRefGoogle Scholar
  11. Moosazadeh, M., Kharkovsky, S., & Case, J. T. (2016a). Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials. IET Microwaves, Antennas and Propagation, 10, 301–309.CrossRefGoogle Scholar
  12. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.CrossRefGoogle Scholar
  13. Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.CrossRefGoogle Scholar
  14. Pandey, G., Verma, H., & Meshram, M. (2015). Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 51, 308–310.CrossRefGoogle Scholar
  15. Schaubert, D. H., Kollberg, E. L., Korzeniowski, T. L., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33, 1392–1400.CrossRefGoogle Scholar
  16. Shaari, A., Millard, S., & Bungey, J. (2004). Modelling the propagation of a radar signal through concrete as a low-pass filter. NDT and E International, 37, 237–242.CrossRefGoogle Scholar
  17. Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.CrossRefGoogle Scholar
  18. Wang, S., Chen, X., & Parini, C. (2007). Analysis of ultra wideband antipodal Vivaldi antenna design. In 2007 Loughborough Antennas and Propagation Conference. IEEE, pp. 129–132.Google Scholar
  19. Wang, Z., Yin, Y., Wu, J., & Lian, R. (2016). A miniaturized CPW-fed antipodal Vivaldi antenna with enhanced radiation performance for wideband applications. IEEE Antennas and Wireless Propagation Letters, 15, 16–19.Google Scholar
  20. Wu, J., Zhao, Z., Nie, Z., & Liu, Q.-H. (2014). A printed UWB Vivaldi antenna using stepped connection structure between slot-line and tapered patches. IEEE Antennas and Wireless Propagation Letters, 13, 698–701.CrossRefGoogle Scholar
  21. Zhu, F., Gao, S., Ho, A. T., Abd-Alhameed, R. A., See, C. H., Li, J., & Xu, J. (2012). Miniaturized tapered slot antenna with signal rejection in 5–6-GHz band using a balun. IEEE Antennas and Wireless Propagation Letters, 11, 507–510.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdi Moosazadeh
    • 1
  1. 1.Center for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations