Advertisement

Small UWB Antipodal Vivaldi Antenna with Improved Radiation Characteristics for Microwave and Millimetre Wave Imaging Applications

  • Mahdi Moosazadeh
Chapter

Abstract

A design of a small and compact elliptically tapered antipodal Vivaldi antenna (AVA) with wide operating bandwidth (5–50 GHz) for the application in UWB imaging system is presented in this chapter. Lower end of frequency band limitation for S11 < −10 dB has been extended by rectangular slits at sun-shaped configuration. The applied rectangular slits enhance antenna gain up to 5.7 dB at the lower frequencies. A half elliptical shaped dielectric lens as extension of antenna substrate is employed to enhance antenna gain at the higher frequencies, and as a result the antenna gain is 14 dB at 50 GHz. In addition, the proposed antenna demonstrates reduced E-plane tilt of beam, e.g. −1° at 50 GHz, and lower side lobe level, cross-polarisation (<−22 dB), E-plane half-power beamwidth (e.g. 12.2° at 50 GHz) and improved front-to-back ratio. Capability of the proposed AVA for a high-range resolution imaging of samples made of construction materials is demonstrated.

Keywords

Antipodal Vivaldi antenna Dielectric lens UWB High gain High front-to-back ratio Small antenna High-range resolution Metal rods Plasterboard sheets Microwave and millimeter wave imaging 

References

  1. Ahmed, S. S., Schiessl, A., Gumbmann, F., Tiebout, M., Methfessel, S., & Schmidt, L. (2012). Advanced microwave imaging. IEEE Microwave Magazine, 13, 26–43.CrossRefGoogle Scholar
  2. Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.CrossRefGoogle Scholar
  3. Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58, 2318–2326.CrossRefGoogle Scholar
  4. Case, J. T., Ghasr, M. T., & Zoughi, R. (2011). Optimum two-dimensional uniform spatial sampling for microwave SAR-based NDE imaging systems. IEEE Transactions on Instrumentation and Measurement, 60, 3806–3815.CrossRefGoogle Scholar
  5. Chamaani, S., Mirtaheri, S. A., & Abrishamian, M. S. (2011). Improvement of time and frequency domain performance of antipodal Vivaldi antenna using multi-objective particle swarm optimization. IEEE Transactions on Antennas and Propagation, 59, 1738–1742.CrossRefGoogle Scholar
  6. Chuang, J.-K., Cheng, Y.-H., & Wang, C.-L. (2016). Compact and broadband microstrip-fed antenna using antisymmetric tapered probe with triangular element. In 2016 IEEE International Symposium on Radio Frequency Integration Technology (RFIT). IEEE, pp. 1–3.Google Scholar
  7. Constantine, A. B. (2005). Antenna theory: Analysis and design. Microstrip antennas (3rd ed.). New York: Wiley.Google Scholar
  8. Cumming, I. G., & Wong, F. H. (2005). Digital processing of synthetic aperture radar data. Artech House, 1, 3.Google Scholar
  9. Daniel, C., Lilly, J., & Auckland, D. (2011). A compact, cost-effective 4–40 GHz antenna. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).Google Scholar
  10. Dastranj, A. (2015). Wideband antipodal Vivaldi antenna with enhanced radiation parameters. IET Microwaves, Antennas and Propagation, 9, 1755–1760.CrossRefGoogle Scholar
  11. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.CrossRefGoogle Scholar
  12. Fei, P., Jiao, Y.-C., Hu, W., & Zhang, F.-S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130.CrossRefGoogle Scholar
  13. Ghasr, M. T., Abou-Khousa, M. A., Kharkovsky, S., Zoughi, R., & Pommerenke, D. (2012). Portable real-time microwave camera at 24 GHz. IEEE Transactions on Antennas and Propagation, 60, 1114–1125.CrossRefGoogle Scholar
  14. Hshieh, Y.-L., Huang, N.-T., Kan, Y.-C., & Chou, H.-T. (2013). Improvement of far field patterns of antipodal Vivaldi antennas with step impedance resonator. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 884–885.Google Scholar
  15. Karahan, M., & Armagan Sahinkaya, D. S. (2014). A reduced size antipodal Vivaldi antenna design for wideband applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 1588–1589.Google Scholar
  16. Kharkovsky, S., & Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-overview and recent advances. IEEE Instrumentation and Measurement Magazine, 10, 26–38.CrossRefGoogle Scholar
  17. Kharkovsky, S., Case, J., Ghasr, M., Zoughi, R., Bae, S., & Belarbi, A. (2012). Application of microwave 3D SAR imaging technique for evaluation of corrosion in steel rebars embedded in cement-based structures. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 31. AIP Publishing, pp. 1516–1523.Google Scholar
  18. Kharkovsky, S., Ghasr, M., Ratnayake, R., & Percy, B. (2014). Microwave imaging with a 3-axis multifunctional scanning system. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1572–1575.Google Scholar
  19. Kim, S.-G., & Chang, K. (2004). Ultra wideband exponentially-tapered antipodal Vivaldi antennas. National radio science meeting, pp. 2273–2276.Google Scholar
  20. Kota, K., & Shafai, L. (2011). Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna. Electronics Letters, 47, 1.CrossRefGoogle Scholar
  21. Li, E., Wang, C., & Guo, G. (2016). Radiation enhanced Vivaldi antenna with double-antipodal structure. IEEE Antennas and Wireless Propagation Letters, 16, 561–564.Google Scholar
  22. Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.CrossRefGoogle Scholar
  23. Moosazadeh, M., & Kharkovsky, S. (2016). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555.CrossRefGoogle Scholar
  24. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.CrossRefGoogle Scholar
  25. Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.CrossRefGoogle Scholar
  26. Pastorino, M. (2010). Microwave imaging. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  27. Puskely, J., Lacik, J., Raida, Z., & Arthaber, H. (2016). High gain dielectric loaded Vivaldi antenna for Ka band applications. IEEE Antennas and Wireless Propagation Letters, 15, 2004–2007.CrossRefGoogle Scholar
  28. Quintero, G., Zurcher, J.-F., & Skrivervik, A. K. (2011). System fidelity factor: A new method for comparing UWB antennas. IEEE Transactions on Antennas and Propagation, 59, 2502–2512.CrossRefGoogle Scholar
  29. Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.CrossRefGoogle Scholar
  30. Walden, M. C. (2013). A wideband, 5–50+ GHz tapered-slot antenna For use in handheld test equipment. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 430–431.Google Scholar
  31. Zoughi, R. (2000). Microwave non-destructive testing and evaluation principles. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdi Moosazadeh
    • 1
  1. 1.Center for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations