Advertisement

Introduction

  • Camilo CaraveoEmail author
  • Fevrier Valdez
  • Oscar Castillo
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Meta-heuristic algorithms have been very popular in recent years and are frequently used to solve optimization problems. There are many bio-inspired algorithms, such as: PSO (Particle Swarm Optimization), ABC (Artificial Bee Colony), ACO (Ant Colony Optimization), GA (Genetic Algorithm), and GSA (Gravitational Search Algorithm).

References

  1. 1.
    Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). USA: Springer.Google Scholar
  2. 2.
    Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., & Valdez, M. (2013). Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Systems with Applications, 40(8), 3196–3206.CrossRefGoogle Scholar
  3. 3.
    Amador-Angulo, L., & Castillo, O. (2016). Comparative study of bio-inspired algorithms applied in the design of fuzzy controller for the water tank. In Recent developments and new direction in soft-computing foundations and applications (pp. 419–438). Springer International Publishing.Google Scholar
  4. 4.
    Amador-Angulo, L., Mendoza, O., Castro, J. R., Rodríguez-Díaz, A., Melin, P., & Castillo, O. (2016). Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors, 16(9), 1458.CrossRefGoogle Scholar
  5. 5.
    Caraveo, C., Valdez, F., & Castillo, O. (2016). Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Applied Soft Computing, 43, 131–142.CrossRefGoogle Scholar
  6. 6.
    Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Song, G. C., & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803–9819.CrossRefGoogle Scholar
  8. 8.
    Azar, D., Fayad, K., & Daoud, C. (2016). A combined ant colony optimization and simulated annealing algorithm to assess stability and fault-proneness of classes based on internal software quality attributes. International Journal of Artificial Intelligence™, 14(2), 137–156.Google Scholar
  9. 9.
    Olivas, F., Valdez, F., & Castillo, O. (2015). Dynamic parameter adaptation in Ant Colony Optimization using a fuzzy system for TSP problems. In IFSA-EUSFLAT (pp. 765–770).Google Scholar
  10. 10.
    Gaxiola, F., Melin, P., Valdez, F., Castro, J. R., & Castillo, O. (2016). Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Applied Soft Computing, 38, 860–871.CrossRefGoogle Scholar
  11. 11.
    González, C. I., Castro, J. R., Martínez, G. E., Melin, P., & Castillo, O. (2013, June). A new approach based on generalized type-2 fuzzy logic for edge detection. In IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint (pp. 424–429). IEEE.Google Scholar
  12. 12.
    González, C. I., Melin, P., Castro, J. R., Castillo, O., & Mendoza, O. (2016). Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing, 47, 631–643.CrossRefGoogle Scholar
  13. 13.
    Melin, P., Castillo, O., Gonzalez, C. I., Castro, J. R., & Mendoza, O. (2016, October). General type-2 fuzzy edge detectors applied to face recognition systems. In Fuzzy Information Processing Society (NAFIPS), 2016 Annual Conference of the North American (pp. 1–6). IEEE.Google Scholar
  14. 14.
    Ochoa, P., Castillo, O., & Soria, J. (2016, September). Fuzzy differential evolution method with dynamic parameter adaptation using type-2 fuzzy logic. In 2016 IEEE 8th International Conference on Intelligent Systems (IS) (pp. 113–118). IEEE.Google Scholar
  15. 15.
    Koornneef, A., & Pieterse, C. M. (2008). Cross talk in defense signaling. Plant Physiology, 146(3), 839–844.CrossRefGoogle Scholar
  16. 16.
    Laumanns, M., Rudolph, G., & Schwefel, H. P. (1998, September). A spatial predator-prey approach to multi-objective optimization: A preliminary study. In International Conference on Parallel Problem Solving from Nature (pp. 241–249). Berlin: Springer.Google Scholar
  17. 17.
    Law, J. H., & Regnier, F. E. (1971). Pheromones. Annual Review of Bio-chemistry, 40(1), 533–548.Google Scholar
  18. 18.
    Caraveo, C., Valdez, F., & Castillo, O. (2015). A new bio-inspired optimization algorithm based on the self-defense mechanisms of plants. In Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization (pp. 211–218). Springer International Publishing.Google Scholar
  19. 19.
    Caraveo, C., Valdez, F., & Castillo, O. (2015). Bio-inspired optimization algorithm based on the self-defense mechanism in plants. In Advances in artificial intelligence and soft computing (pp. 227–237). Springer International Publishing.Google Scholar
  20. 20.
    Caraveo, P. (2016, December). A new metaheuristic based on the self-defense techniques of the plants in nature. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–5). IEEE.Google Scholar
  21. 21.
    Olivas, F., Valdez, F., Castillo, O., Gonzalez, C. I., Martinez, G., & Melin, P. (2017). Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Applied Soft Computing, 53, 74–87.CrossRefGoogle Scholar
  22. 22.
    Barraza, J., Melin, P., Valdez, F., & Gonzalez, C. I. (2016, July). Fuzzy FWA with dynamic adaptation of parameters. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 4053–4060). IEEE.Google Scholar
  23. 23.
    Peraza, C., Valdez, F., Garcia, M., Melin, P., & Castillo, O. (2016). A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms, 9(4), 69.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pérez, J., Valdez, F., & Castillo, O. (2017). Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation. In Nature-inspired design of hybrid intelligent systems (pp. 343–355). Springer International Publishing.Google Scholar
  25. 25.
    Perez, J., Valdez, F., Castillo, O., & Roeva, O. (2016, September). Bat algorithm with parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In 2016 IEEE 8th International Conference on Intelligent Systems (IS) (pp. 120–127). IEEE.Google Scholar
  26. 26.
    Perez, J., Valdez, F., Castillo, O., Melin, P., Gonzalez, C., & Martinez, G. (2017). Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Computing, 21(3), 667–685.CrossRefGoogle Scholar
  27. 27.
    Teodorovic, D., Bee colony optimization (BCO). (2009). In C. P. Lim, L. C. Jain, & S. Dehuri (Eds.), Innovations in swarm intelligence (pp. 39–60). Berlin: Springer. (65, 215).CrossRefGoogle Scholar
  28. 28.
    Harmanani, H. M., Drouby, F., & Ghosn, S. B. (2009, March). A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves. In Proceedings of the 2009 Spring Simulation Multiconference (p. 30). Society for Computer Simulation International.Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camilo Caraveo
    • 1
    Email author
  • Fevrier Valdez
    • 1
  • Oscar Castillo
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations