The i2 Protocol for Digital Immediate Loading in Totally Edentulous Patients: The Basics

  • Luis Cuadrado
  • Cristina Canals Salinas
  • Cristina Cuadrado Canals
  • Andrea Sánchez Becerra
  • Luis Cuadrado Canals


Immediate loading, same-day implant dentistry on a full digital workflow starting with the intraoral scanner means a better, more accurate, implant dentistry for both the patient and the treatment team. It allows us to fulfill modern patient expectations using the best of both dental worlds, the digital and the artistry of the best dental technicians.

To be able to provide this treatment, it is mandatory to follow a strict protocol, starting even in the initial consultation, and is important to know which elements are implicated in the treatment. In this chapter, we will discuss all the elements involved in our protocol for full digital same-day immediate loading, guided or non-guided, from the use of the intraoral scanner, the adequate implant, and the modified surgery to the lab design and production.


Full digital Intraoral scanner Edentulous Implants Same day Temporaries Workflow Immediate loading Guided surgery Conventional workflow i2 workflow i2 device 


  1. Amin S, Weber HP, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P. Digital Vs. Conventional full-arch implant impressions: a comparative study. Clin Oral Impl Res. 2017;28:1360–7.CrossRefGoogle Scholar
  2. Andriessen F, Rijkens DR, van der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study. J Prosthet Dent. 2014a;111:186–94.CrossRefGoogle Scholar
  3. Andriessen FS, Rijkens DR, van der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study. J Prosthet Dent. 2014b;111:186–94.CrossRefGoogle Scholar
  4. Anh J, Park J, Kim M. A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction. Korean J Orthod. 2016;46(1):3–12.CrossRefGoogle Scholar
  5. Basaki K, Alkumru H, De Souza G, Finer Y. Accuracy of digital Vs conventional implant impression approach: a three-dimensional comparative in vitro analysis. Int J Oral Maxillofac Implants. 2017;32:792–9.CrossRefGoogle Scholar
  6. Beom-Park J, et al. Evaluation on the bone regenerative capacity of deproteinized bovine bone-derived bone graft material (OCS-B). Seoul: Department of periodontology, College of Dentistry, Seul National University; 2006.Google Scholar
  7. Buser D, et al. Titanium-zirconium narrow diameter Vs. titanium regular diameter implants for anterior and premolar single crowns: 1-year results of a randomized controlled clinical study. J Clin Periodontol. 2013a;40(11):1052–61.CrossRefGoogle Scholar
  8. Buser D, et al. Long-term stability of early implant placement with contour augmentation. J Dent Res. 2013b;92(12 Suppl):176S–82S.CrossRefGoogle Scholar
  9. Dard M, et al. Integrative performance analysis of a novel bone level tapered implant. Adv Dent Res. 2016;28(1):28–33.CrossRefGoogle Scholar
  10. Ender A, Mehl A. Accuracy of complete arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013a;109(2):121–8.CrossRefGoogle Scholar
  11. Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013b;16:11–21.PubMedGoogle Scholar
  12. Ender A, Mehl A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015;46:9–17.PubMedGoogle Scholar
  13. Fang J-H, An X, Jeong S-M, Choi B-H. Digital intraoral impression technique for edentulous jaws. J Prosthet Dent. 2017;119(5):733–5.CrossRefGoogle Scholar
  14. Gherlone E, Capparé P, Gastaldi G, Crespi R. Conventional versus digital impressions for “all-on-four” restorations. Int J Oral Maxillofac Implants. 2016;31:324–30.CrossRefGoogle Scholar
  15. Gjelvold B, Chrcanovic B, Korduner E, Collin-Bagewitz I, Kisch J. Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. J Prosthodont. 2016;25(4):282–7.CrossRefGoogle Scholar
  16. Goodacre BJ, Goodacre CJ. Using intraoral scanning to fabricate complete dentures: first experiences. Int J Prosthodont. 2018;31:166–70.CrossRefGoogle Scholar
  17. Gottlow J, et al. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. ClinImplantDentRelat Res. 2010;14(4):538–45.Google Scholar
  18. Gottlow J et al. Preclinical data presented at the 23rd Annual meeting of the Academy of Osseointegration (AO), Boston, and at the 17th Annual Scientific Meeting of the European Association for Osseointegration (EAO), Warsaw. 2008.Google Scholar
  19. Hack G, Patzelt S. Evaluation of the accuracy of six intraoral scanning devices: An in-vitro investigation. ADA. 2015;10(4):1–5.Google Scholar
  20. Joda T, Bragger U. Time-efficiency analysis comparing digital and conventional workflows for implant crowns: a prospective clinical crossover trial. Int J Oral Maxillofac Implants. 2015;30:1047–53.CrossRefGoogle Scholar
  21. Joda T, Bragger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015;30:330–7.CrossRefGoogle Scholar
  22. Kapos T, Evans CA. CAD/CAM technology for implant abutments, crowns and superstructures. Int J Oral Maxillofac Implants. 2014;29(Suppl):117–36.CrossRefGoogle Scholar
  23. Kapos T, Ashy LM, Gallucci GO, Weber HP, Wismeijer D. Computer-aided design and computer-assisted manufacturing in prosthetic implant dentistry. Int J Oral Maxillofac Implants. 2009;24(Suppl):110–7.PubMedGoogle Scholar
  24. Kim J-E, Amelya A, Shin Y, Shim J-S. Accuracy of intraoral digital impressions using an artificial landmark. J Prosthet Dent. 2017;117:755–61.CrossRefGoogle Scholar
  25. Lages FS, Douglas-de Oliveira DW, Costa FO. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: a systematic review. Clin Implant Dent Relat Res. 2017;20(1):26–33.CrossRefGoogle Scholar
  26. Lee J-H. Improved digital impressions of edentulous areas. J Prosthet Dent. 2017;117(3):448–9.CrossRefGoogle Scholar
  27. Lo Russo L, Salamino A. Single-arch digital removable complete denture: a workflow that starts from the intraoral scan. J Prosthet Dent. 2017a;120(1):20–4.CrossRefGoogle Scholar
  28. Lo Russo L, Salamino A. Removable complete digital dentures: a workflow that integrates open technologies. J Prosthet Dent. 2017b;119(5):727–32.CrossRefGoogle Scholar
  29. Marghalani A, Weber H-P, Finkelman M, Kudara Y, El Rafie K, Papaspyridakos P. Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy. J Prosthet Dent. 2018;119:574–9.CrossRefGoogle Scholar
  30. Müller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS pod scanner. Quintessence Int. 2016;47(4):343–9.PubMedGoogle Scholar
  31. Nakashima D, Ishii K, Matsumoto M, Nakamura M, Nagura T. A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS One. 2018;13(6):e0199362.CrossRefGoogle Scholar
  32. Nedelcu R, Olsson P, Nyström I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison. BMC Oral Health. 2018;18(1):27.CrossRefGoogle Scholar
  33. Nicolau P, et al. Ten year results from a randomised controlled multicentre study with immediately and early loaded SLActive implants in posterior jaws. Data presented at the 25th Annual Scientific Meeting of the European Association of Osseointegration, Sep 29–Oct 1, 2016, Paris, France.Google Scholar
  34. Papaspyridakos P, Chen CJ, Gallucci GO, Doukoudakis A, Weber HP, Chronopoulos V. Accuracy of implant impressions for partially and completely edentulous patients: a systematic review. Int J Oral Maxillofac Implants. 2014;29:836–45.CrossRefGoogle Scholar
  35. Papaspyridakos P, Gallucci GO, Chen C-J, Hanssen S, Naert I, Vandenberghe B. Digital Vs. conventional implant impressions for edentulous patients: accuracy outcomes. Clin Oral Impl Res. 2015;27:465–72.CrossRefGoogle Scholar
  36. Sahin S, Cehreli MC. The significance of passive framework fit in implant prosthodontics: current status. Impl Dent. 2001;10(2):85–92.CrossRefGoogle Scholar
  37. Sciasci P, Casalle N, Vaz LG. Evaluation of primary stability in modified implants: analysis by resonance frequency and insertion torque. Clin Implant Dent Relat Res. 2018;20(3):274–9.CrossRefGoogle Scholar
  38. Seelbach P, Brueckel C, Wostmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17:1759–64.CrossRefGoogle Scholar
  39. Shin S-Y, et al. Long-term results of new deproteinized bovine bone material in a maxillary sinus graft procedure. J Periodontal Sci. 2014;44:259–64.CrossRefGoogle Scholar
  40. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014a;14:1.CrossRefGoogle Scholar
  41. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014b;14:10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis Cuadrado
    • 1
  • Cristina Canals Salinas
    • 1
  • Cristina Cuadrado Canals
    • 1
  • Andrea Sánchez Becerra
    • 1
  • Luis Cuadrado Canals
    • 1
  1. 1.i2 Implantologia Dental and Learning CenterMadridSpain

Personalised recommendations