MicroRNAs in Major Depressive Disorder

  • Gabriel R. Fries
  • Wei Zhang
  • Deborah Benevenuto
  • Joao QuevedoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)


Major depressive disorder (MDD) is a severe and chronic psychiatric disorder with a high prevalence in the population. Although our understanding of its pathophysiological mechanisms has significantly increased over the years, available treatments still present several limitations and are not effective to all MDD patients. Epigenetic mechanisms have recently been suggested to play key roles in MDD pathogenesis and treatment, including the effects of small noncoding RNAs known as microRNAs (miRNAs). miRNAs can modulate gene expression posttranscriptionally by interfering with the stability and translation of messenger RNA molecules and are also known to cross-talk with other epigenetic mechanisms. In this review, we will summarize and discuss recent findings of alterations in miRNAs in tissues of patients with MDD and evidence of treatment-induced effects in these molecules.


Major depressive disorder Patients Pathological mechanisms Treatment-induced effects Biomarkers MicroRNAs miRNAs 



The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, the University of Texas Health Science Center at Houston (UTHealth). The Center of Excellence on Mood Disorders (USA) is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation, and Anne and Don Fizer Foundation Endowment for Depression Research. Translational Psychiatry Laboratory (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by grants from CNPq, FAPESC, Instituto Cérebro e Mente, and UNESC.

J.Q. is a 1A CNPq Research Fellow.


  1. 1.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn: DSM-5. American Psychiatric Publishing, Washington, DC. ISBN-10: 8123923791Google Scholar
  2. 2.
    World Health Organization (2017) Depression and other common mental disorders: global health estimates.;jsessionid=6EE653ED0F776698A04D5181E8AB50D0?sequence=1Google Scholar
  3. 3.
    Penninx BW, Milaneschi Y, Lamers F, Vogelzangs N (2013) Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 11:129.
  4. 4.
    Chesney E, Goodwin GM, Fazel S (2014) Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry 13:153–160PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Geschwind DH, Flint J (2015) Genetics and genomics of psychiatric disease. Science 349:1489–1494PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lorant V, Deliege D, Eaton W, Robert A, Philippot P, Ansseau M (2003) Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol 157:98–112PubMedCrossRefGoogle Scholar
  7. 7.
    Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126PubMedCrossRefGoogle Scholar
  8. 8.
    Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW, Krogh J et al (2013) Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiat 70:812–820CrossRefGoogle Scholar
  9. 9.
    Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M et al (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065. Scholar
  10. 10.
    Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 19:791–800PubMedCrossRefGoogle Scholar
  11. 11.
    Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 72:3–12PubMedCrossRefGoogle Scholar
  12. 12.
    Hansen KF, Obrietan K (2013) MicroRNA as therapeutic targets for treatment of depression. Neuropsychiatr Dis Treat 9:1011–1012PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dalton VS, Kolshus E, McLoughlin DM (2014) Epigenetics and depression: return of the repressed. J Affect Disord 155:1–12PubMedCrossRefGoogle Scholar
  14. 14.
    Hunsberger JG, Austin DR, Chen G, Manji HK (2009) MicroRNAs in mental health: from biological underpinnings to potential therapies. NeuroMolecular Med 11:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2011) Biological functions of microRNAs: a review. J Physiol Biochem 67:129–139PubMedCrossRefGoogle Scholar
  16. 16.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Y, Yang X, Zhao L, Zhang J, Li T, Ma X (2016) Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr Dis Treat 12:2905–2911PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX et al (2013) Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One 8:e63648. Scholar
  19. 19.
    Garbett KA, Vereczkei A, Kalman S, Brown JA, Taylor WD, Faludi G et al (2015) Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry 77:256–265PubMedCrossRefGoogle Scholar
  20. 20.
    Camkurt MA, Acar S, Coskun S, Gunes M, Gunes S, Yilmaz MF et al (2015) Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. J Psychiatr Res 69:67–71PubMedCrossRefGoogle Scholar
  21. 21.
    Kuang WH, Dong ZQ, Tian LT, Li J (2018) MicroRNA-451a, microRNA-34a-5p, and microRNA-221-3p as predictors of response to antidepressant treatment. Braz J Med Biol Res 51:e7212.
  22. 22.
    Wan Y, Liu Y, Wang X, Wu J, Liu K, Zhou J et al (2015) Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One 10:e0121975. doi: 10.1371/journal.pone.0121975PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF et al (2016) The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res 82:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gururajan A, Naughton ME, Scott KA, O’Connor RM, Moloney G, Clarke G et al (2016) MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry 6:e862. Scholar
  25. 25.
    Belzeaux R, Bergon A, Jeanjean V, Loriod B, Formisano-Treziny C, Verrier L et al (2012) Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry 2:e185. Scholar
  26. 26.
    Li J, Meng H, Cao W, Qiu T (2015) MiR-335 is involved in major depression disorder and antidepressant treatment through targeting GRM4. Neurosci Lett 606:167–172PubMedCrossRefGoogle Scholar
  27. 27.
    Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of MicroRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology 42:864–875PubMedCrossRefGoogle Scholar
  28. 28.
    He S, Liu X, Jiang K, Peng D, Hong W, Fang Y et al (2016) Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res 78:65–71PubMedCrossRefGoogle Scholar
  29. 29.
    Fan HM, Sun XY, Guo W, Zhong AF, Niu W, Zhao L et al (2014) Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res 59:45–52PubMedCrossRefGoogle Scholar
  30. 30.
    Lopez JP, Fiori LM, Cruceanu C, Lin R, Labonte B, Cates HM et al (2017) MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun 8:15497. Scholar
  31. 31.
    Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One 7:e33201. Scholar
  32. 32.
    Hansen KF, Sakamoto K, Wayma n GA, Impey S, Obrietan K (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5:e15497. Scholar
  33. 33.
    Scott HL, Tamagnini F, Narduzzo KE, Howarth JL, Lee YB, Wong LF et al (2012) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Salta E, De Strooper B (2017) microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J 31:424–433PubMedCrossRefGoogle Scholar
  35. 35.
    Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE et al (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179PubMedCrossRefGoogle Scholar
  36. 36.
    Sadakierska-Chudy A, Frankowska M, Miszkiel J, Wydra K, Jastrzebska J, Filip M (2017) Prolonged induction of miR-212/132 and REST expression in rat striatum following cocaine self-administration. Mol Neurobiol 54:2241–2254PubMedCrossRefGoogle Scholar
  37. 37.
    Quinn RK, James MH, Hawkins GE, Brown AL, Heathcote A, Smith DW et al (2018) Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction-prone rats. Addict Biol 23:631–642PubMedCrossRefGoogle Scholar
  38. 38.
    Walker RM, Rybka J, Anderson SM, Torrance HS, Boxall R, Sussmann JE et al (2015) Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J Psychiatr Res 62:48–55PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yu HC, Wu J, Zhang HX, Zhang GL, Sui J, Tong WW et al (2015) Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Prog Neuro-Psychopharmacol Biol Psychiatry 63:23–29CrossRefGoogle Scholar
  40. 40.
    Villela D, Ramalho RF, Silva AR, Brentani H, Suemoto CK, Pasqualucci CA et al (2016) Differential DNA methylation of MicroRNA genes in temporal cortex from Alzheimer’s disease individuals. Neural Plast 2016:2584940. Scholar
  41. 41.
    Pagan C, Goubran-Botros H, Delorme R, Benabou M, Lemiere N, Murray K et al (2017) Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 7:2096.
  42. 42.
    Liu S, Zhang F, Wang X, Shugart YY, Zhao Y, Li X et al (2017) Diagnostic value of blood-derived microRNAs for schizophrenia: results of a meta-analysis and validation. Sci Rep 7:15328.
  43. 43.
    Cosin-Tomas M, Antonell A, Llado A, Alcolea D, Fortea J, Ezquerra M et al (2017) Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations. Mol Neurobiol 54:5550–5562PubMedCrossRefGoogle Scholar
  44. 44.
    Reynolds RH, Petersen MH, Willert CW, Heinrich M, Nymann N, Dall M et al (2018) Perturbations in the p53/miR-34a/SIRT1 pathway in the R6/2 Huntington’s disease model. Mol Cell Neurosci 88:118–129PubMedCrossRefGoogle Scholar
  45. 45.
    Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93PubMedCrossRefGoogle Scholar
  46. 46.
    Su M, Hong J, Zhao Y, Liu S, Xue X (2015) MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA132 in rats with depression. Mol Med Rep 12:5399–5406PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao Y, Wang S, Chu Z, Dang Y, Zhu J, Su X (2017) MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1). Brain Res 1669:55–62PubMedCrossRefGoogle Scholar
  48. 48.
    Higuchi F, Uchida S, Yamagata H, Abe-Higuchi N, Hobara T, Hara K et al (2016) Hippocampal MicroRNA-124 enhances chronic stress resilience in mice. J Neurosci 36:7253–7267PubMedCrossRefGoogle Scholar
  49. 49.
    Aschrafi A, Verheijen JM, Gordebeke PM, Olde Loohuis NF, Menting K, Jager A et al (2016) MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression. J Psychiatry Neurosci 41:342–353PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yi LT, Li J, Liu BB, Luo L, Liu Q, Geng D (2014) BDNF-ERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. J Psychiatry Neurosci 39:348–359PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zurawek D, Kusmider M, Faron-Gorecka A, Gruca P, Pabian P, Kolasa M et al (2016) Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress—an animal model of depression. Eur Neuropsychopharmacol 26:23–36PubMedCrossRefGoogle Scholar
  52. 52.
    Lopez JP, Kos A, Turecki G (2018) Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response. Curr Opin Psychiatry 31:7–16PubMedCrossRefGoogle Scholar
  53. 53.
    Belzeaux R, Lin R, Ju C, Chay MA, Fiori LM, Lutz PE et al (2018) Transcriptomic and epigenomic biomarkers of antidepressant response. J Affect Disord 233:36–44PubMedCrossRefGoogle Scholar
  54. 54.
    Belzeaux R, Lin R, Turecki G (2017) Potential use of MicroRNA for monitoring therapeutic response to antidepressants. CNS Drugs 31:253–262PubMedCrossRefGoogle Scholar
  55. 55.
    Lopez JP, Pereira F, Richard-Devantoy S, Berlim M, Chachamovich E, Fiori LM et al (2017) Co-variation of peripheral levels of miR-1202 and brain activity and connectivity during antidepressant treatment. Neuropsychopharmacology 42:2043–2051PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fiori LM, Lopez JP, Richard-Devantoy S, Berlim M, Chachamovich E, Jollant F et al (2017) Investigation of miR-1202, miR-135a, and miR-16 in major depressive disorder and antidepressant response. Int J Neuropsychopharmacol 20:619–623PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B et al (2014) miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 20:764–768PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Oved K, Morag A, Pasmanik-Chor M, Oron-Karni V, Shomron N, Rehavi M et al (2012) Genome-wide miRNA expression profiling of human lymphoblastoid cell lines identifies tentative SSRI antidepressant response biomarkers. Pharmacogenomics 13:1129–1139PubMedCrossRefGoogle Scholar
  59. 59.
    Enatescu VR, Papava I, Enatescu I, Antonescu M, Anghel A, Seclaman E et al (2016) Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investig 13:549–557PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bocchio-Chiavetto L, Maffioletti E, Bettinsoli P, Giovannini C, Bignotti S, Tardito D et al (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 23:602–611PubMedCrossRefGoogle Scholar
  61. 61.
    Oved K, Morag A, Pasmanik-Chor M, Rehavi M, Shomron N, Gurwitz D (2013) Genome-wide expression profiling of human lymphoblastoid cell lines implicates integrin beta-3 in the mode of action of antidepressants. Transl Psychiatry 3:e313. doi: 10.1038/tp.2013.86PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fries GR, Quevedo J (2018) Exosomal MicroRNAs as potential biomarkers in neuropsychiatric disorders. Methods Mol Biol 1733:79–85PubMedCrossRefGoogle Scholar
  63. 63.
    Sharma A (2014) Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol 357:143–149PubMedCrossRefGoogle Scholar
  64. 64.
    Nagy C, Turecki G (2015) Transgenerational epigenetic inheritance: an open discussion. Epigenomics 7:781–790PubMedCrossRefGoogle Scholar
  65. 65.
    Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10:291–297PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schmidt MF (2014) Drug target miRNAs: chances and challenges. Trends Biotechnol 32:578–585PubMedCrossRefGoogle Scholar
  67. 67.
    Bostrom AE, Ciuculete DM, Attwood M, Krattinger R, Nikontovic L, Titova OE et al (2017) A MIR4646 associated methylation locus is hypomethylated in adolescent depression. J Affect Disord 220:117–128PubMedCrossRefGoogle Scholar
  68. 68.
    Wang X, Sundquist K, Hedelius A, Palmer K, Memon AA, Sundquist J (2015) Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics 7:69.
  69. 69.
    Maffioletti E, Cattaneo A, Rosso R, Maina G, Maj C, Gennarelli M et al (2016) Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord 200:250–258PubMedCrossRefGoogle Scholar
  70. 70.
    Sun N, Lei L, Wang Y, Yang C, Liu Z, Li X et al (2016) Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J Affect Disord 194:109–114PubMedCrossRefGoogle Scholar
  71. 71.
    Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L et al (2015) CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord 178:25–31PubMedCrossRefGoogle Scholar
  72. 72.
    Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y (2014) Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One 9:e86469. Scholar
  73. 73.
    Maheu M, Lopez JP, Crapper L, Davoli MA, Turecki G, Mechawar N (2015) MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl Psychiatry 5:e511. doi: 10.1038/tp.2015.11PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM (2017) Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand 136:594–606PubMedCrossRefGoogle Scholar
  75. 75.
    Belzeaux R, Lin CW, Ding Y, Bergon A, Ibrahim EC, Turecki G et al (2016) Predisposition to treatment response in major depressive episode: a peripheral blood gene coexpression network analysis. J Psychiatr Res 81:119–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gabriel R. Fries
    • 1
  • Wei Zhang
    • 1
  • Deborah Benevenuto
    • 1
  • Joao Quevedo
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  2. 2.Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  3. 3.Neuroscience Graduate ProgramThe University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonUSA
  4. 4.Translational Psychiatry Laboratory, Graduate Program in Health SciencesUniversity of Southern Santa Catarina (UNESC)CriciúmaBrazil

Personalised recommendations