Advertisement

Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms

  • Sho Takatori
  • Wenbo Wang
  • Akihiro Iguchi
  • Taisuke TomitaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)

Abstract

The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.

Keywords

Alzheimer disease (AD) Amyloid β (Aβ) Tau Amyloid hypothesis Sporadic AD Genetic risk factor Genome-wide association study (GWAS) Single nucleotide polymorphism (SNP) Rare variant Microglia Triggering receptor expressed on myeloid cells 2 (TREM2) Neuroinflammation Neurodegenerative disease 

Notes

Acknowledgment

This work was supported in part by Grant-in-Aid for Scientific Research (A) [15H02492 to T.T.] and Grant-in-Aid for Young Scientists (B) [17K15446 to S.T.] from the Japan Society for the Promotion of Science (JSPS), by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development (AMED) [JP18dm0207014h to T.T.], by the Sunbor Grant from the Suntory Foundation for Life Sciences [to S.T.], by the Uehara Memorial Foundation [to T.T.], and by the Mitsubishi Foundation [to T.T.].

References

  1. 1.
    Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Prim 1:15056. https://doi.org/10.1038/nrdp.2015.56CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. https://doi.org/10.1101/cshperspect.a006189CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nordberg A, Rinne JO, Kadir A, Långström B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6(2):78-87PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Khachaturian AS, Hayden KM, Mielke MM, Tang Y, Lutz MW, Gustafson DR et al (2018) Future prospects and challenges for Alzheimer’s disease drug development in the era of the NIA-AA Research Framework. Alzheimers Dement 14:532–534PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Knopman DS, Haeberlein SB, Carrillo MC, Hendrix JA, Kerchner G, Margolin R et al (2018) The National Institute on Aging and the Alzheimer’s Association Research Framework for Alzheimer’s disease: perspectives from the research roundtable. Alzheimers Dement 14:563–575PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Silverberg N, Elliott C, Ryan L, Masliah E, Hodes R (2018) NIA commentary on the NIA-AA Research Framework: towards a biological definition of Alzheimer’s disease. Alzheimers Dement 14:576–578PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wolfe MS (2006) The γ-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931–7939PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Reiman EM, Langbaum JB, Tariot PN, Lopera F, Bateman RJ, Morris JC et al (2016) CAP—advancing the evaluation of preclinical Alzheimer disease treatments. Nat Rev Neurol 12:56–61PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS-amyloid in Alzheimer’s disease. Science 330(6012):1774. https://doi.org/10.1126/science.1197623CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T et al (2017) Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841–849PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099CrossRefGoogle Scholar
  25. 25.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832. https://doi.org/10.1001/jama.2010.574CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA et al (2017) Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med 14:e1002258. https://doi.org/10.1371/journal.pmed.1002258CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu JZ, Erlich Y, Pickrell JK (2017) Case–control association mapping by proxy using family history of disease. Nat Genet 49:325–331PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8:99. https://doi.org/10.1038/s41398-018-0150-6CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY et al (2013) ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 80:385–401PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116CrossRefGoogle Scholar
  33. 33.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCrossRefGoogle Scholar
  34. 34.
    Condello C, Yuan P, Grutzendler J (2018) Microglia-mediated neuroprotection, TREM2, and Alzheimer’s disease: evidence from optical imaging. Biol Psychiatry 83:377–387PubMedCrossRefGoogle Scholar
  35. 35.
    Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S et al (2012) High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry 17:875–879PubMedCrossRefGoogle Scholar
  37. 37.
    Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505:550–554PubMedCrossRefGoogle Scholar
  38. 38.
    Logue MW, Schu M, Vardarajan BN, Farrell J, Bennett DA, Buxbaum JD et al (2014) Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans. Alzheimers Dement 10:609–618.e11. https://doi.org/10.1016/j.jalz.2014.06.010CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK et al (2014) A rare mutation in UNC5C predisposes to late-onset Alzheimer’s disease and increases neuronal cell death. Nat Med 20:1452–1457PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Raghavan NS, Brickman AM, Andrews H, Manly JJ, Schupf N, Lantigua R et al (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann Clin Transl Neurol 5:832–842PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA et al (2016) Whole-genome sequencing of a healthy aging cohort. Cell 165:1002–1011PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW et al (2017) Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med 9:100. https://doi.org/10.1186/s13073-017-0486-1CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472PubMedCrossRefGoogle Scholar
  44. 44.
    Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78. https://doi.org/10.1001/jamaneurol.2013.579CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paradowska-Gorycka A, Jurkowska M (2013) Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Hum Immunol 74:730–737PubMedCrossRefGoogle Scholar
  46. 46.
    Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M et al (2016) TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 48:222.e9–222.e15. https://doi.org/10.1016/j.neurobiolaging.2016.07.028CrossRefGoogle Scholar
  47. 47.
    Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zhao Y, Wu X, Li X, Jiang L-L, Gui X, Liu Y et al (2018) TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 97:1023–1031.e7. https://doi.org/10.1016/j.neuron.2018.01.031CrossRefPubMedGoogle Scholar
  49. 49.
    Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91:328–340PubMedCrossRefGoogle Scholar
  50. 50.
    Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3:ra38. https://doi.org/10.1126/scisignal.2000500CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T et al (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol 10:734–743PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12:56. https://doi.org/10.1186/s13024-017-0197-5CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36:1646–1653PubMedCrossRefGoogle Scholar
  54. 54.
    Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z et al (2017) Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 214:597–607PubMedPubMedCentralGoogle Scholar
  55. 55.
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86. https://doi.org/10.1126/scitranslmed.3009093CrossRefPubMedGoogle Scholar
  56. 56.
    Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ et al (2016) Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife 5. https://doi.org/10.7554/eLife.20391
  57. 57.
    Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X et al (2018) Molecular basis for the loss-of-function effects of the Alzheimer’s disease-associated R47H variant of the immune receptor TREM2. J Biol Chem 293:12634–12646PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT et al (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML et al (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212:287–295PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM et al (2017) Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J Neurosci 37:637–647PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92:252–264PubMedCrossRefGoogle Scholar
  62. 62.
    Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 6:6176. https://doi.org/10.1038/ncomms7176CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Piccio L, Deming Y, Del-Águila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Suárez-Calvet M, Kleinberger G, Araque Caballero MÁ, Brendel M, Rominger A, Alcolea D et al (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–476PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S et al (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309:1483. https://doi.org/10.1001/jama.2013.2973CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89PubMedCrossRefGoogle Scholar
  69. 69.
    Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR et al (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18:1556–1558PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhu X-C, Yu J-T, Jiang T, Wang P, Cao L, Tan L (2015) CR1 in Alzheimer’s disease. Mol Neurobiol 51:753–765PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Klickstein LB, Bartow TJ, Miletic V, Rabson LD, Smith JA, Fearon DT (1988) Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med 168:1699–1717PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N et al (2012) Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17:223–233PubMedCrossRefGoogle Scholar
  75. 75.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178PubMedCrossRefGoogle Scholar
  76. 76.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kao AW, McKay A, Singh PP, Brunet A, Huang EJ (2017) Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18:325–333PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919PubMedCrossRefGoogle Scholar
  80. 80.
    Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Viswanathan J, Mäkinen P, Helisalmi S, Haapasalo A, Soininen H, Hiltunen M (2009) An association study between granulin gene polymorphisms and Alzheimer’s disease in Finnish population. Am J Med Genet B Neuropsychiatr Genet 150B:747–750PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sheng J, Su L, Xu Z, Chen G (2014) Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer’s disease. Gene 542:141–145PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kamalainen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M et al (2013) GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimers Dis 33:23–27PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Fenoglio C, Galimberti D, Cortini F, Kauwe JSK, Cruchaga C, Venturelli E et al (2009) Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimers Dis 18:603–612PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T et al (2017) Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol 133:785–807PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R et al (2014) Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20:1157–1164PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang H-Y et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC et al (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain 138:3076–3088PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Shaftel SS, Kyrkanides S, Olschowka JA, Miller JH, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:1595–1604PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al (2013) Sustained interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33:5053–5064PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2012) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Vasquez JB, Fardo DW, Estus S (2013) ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci Lett 556:58–62PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H et al (2015) Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat Genet 47:445–447PubMedCrossRefGoogle Scholar
  95. 95.
    Sassi C, Nalls MA, Ridge PG, Gibbs JR, Ding J, Lupton MK et al (2016) ABCA7 p.G215S as potential protective factor for Alzheimer’s disease. Neurobiol Aging 46:235.e1–235.e9. https://doi.org/10.1016/j.neurobiolaging.2016.04.004CrossRefGoogle Scholar
  96. 96.
    Kaminski WE, Orsó E, Diederich W, Klucken J, Drobnik W, Schmitz G (2000) Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem Biophys Res Commun 273:532–538PubMedCrossRefGoogle Scholar
  97. 97.
    Hayashi M, Abe-Dohmae S, Okazaki M, Ueda K, Yokoyama S (2005) Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7. J Lipid Res 46:1703–1711PubMedCrossRefGoogle Scholar
  98. 98.
    Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W et al (2003) ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 278:42906–42912PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2010) Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res 51:2591–2599PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y et al (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8:28. https://doi.org/10.1038/s41467-017-00037-1CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220:1277–1279PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129:79–94PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK et al (2013) Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 33:4387–4394PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Sakae N, Liu C-C, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y et al (2016) ABCA7 deficiency accelerates amyloid-beta generation and Alzheimer’s neuronal pathology. J Neurosci 36:3848–3859PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290:24152–24165PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R (2006) PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 116:2869–2879PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36:88–96PubMedCrossRefGoogle Scholar
  109. 109.
    Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P et al (2008) rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain. J Biol Chem 283:30351–30362PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C et al (2009) Structural insights into formation of an active signaling complex between Rac and phospholipase C Gamma 2. Mol Cell 34:223–233PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bae J, Sung BH, Cho IH, Song WK (2012) F-actin-dependent regulation of NESH dynamics in rat hippocampal neurons. PLoS One 7:e34514. https://doi.org/10.1371/journal.pone.0034514CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Bae J, Sung BH, Cho IH, Kim S-M, Song WK (2012) NESH regulates dendritic spine morphology and synapse formation. PLoS One 7:e34677. https://doi.org/10.1371/journal.pone.0034677CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Satoh J-I, Kino Y, Yanaizu M, Tosaki Y, Sakai K, Ishida T et al (2017) Microglia express ABI3 in the brains of Alzheimer’s disease and Nasu-Hakola disease. Intractable Rare Dis Res 6:262–268PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ichigotani Y, Fujii K, Hamaguchi M, Matsuda S (2002) In search of a function for the E3B1/Abi2/Argbp1/NESH family (Review). Int J Mol Med 9:591–595PubMedGoogle Scholar
  115. 115.
    Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S et al (2015) The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 13:41. https://doi.org/10.1186/s12964-015-0119-5CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Moraes L, Zanchin NIT, Cerutti JM (2017) ABI3, a component of the WAVE2 complex, is potentially regulated by PI3K/AKT pathway. Oncotarget 8:67769–67781PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20:1052–1061PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Fisher RC, Scott EW (1998) Role of PU.1 in hematopoiesis. Stem Cells 16:25–37PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RLM et al (2013) The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 61:929–942PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Pauls SD, Marshall AJ (2017) Regulation of immune cell signaling by SHIP1: a phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 47:932–945PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Antunez C, Boada M, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R, Marin J et al (2011) The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer’s disease. Genome Med 3:33. https://doi.org/10.1186/gm249CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Greer PL, Bear DM, Lassance J-M, Bloom ML, Tsukahara T, Pashkovski SL et al (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L et al (2017) MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol 95:611–619PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Rocha H, Sampaio M, Rocha R, Fernandes S, Leão M (2016) MEF2C haploinsufficiency syndrome: report of a new MEF2C mutation and review. Eur J Med Genet 59:478–482PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Canté-Barrett K, Pieters R, Meijerink JPP (2014) Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33:403–410PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A et al (2017) Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 8:717. https://doi.org/10.1038/s41467-017-00769-0CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Akiyama H (1994) Inflammatory response in Alzheimer’s disease. Tohoku J Exp Med 174:295–303PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Streit WJ, Braak H, Xue Q-S, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, Milior G et al (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64:826–839PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Plescher M, Seifert G, Hansen JN, Bedner P, Steinhäuser C, Halle A (2018) Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer’s disease mouse model. Glia 66:1464–1480PubMedCrossRefGoogle Scholar
  132. 132.
    Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK et al (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64:835–841PubMedCrossRefGoogle Scholar
  133. 133.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143PubMedCrossRefGoogle Scholar
  134. 134.
    Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113:E1738–E1746. https://doi.org/10.1073/pnas.1525528113CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17. https://doi.org/10.1016/j.cell.2017.05.018CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376PubMedCrossRefGoogle Scholar
  137. 137.
    Ulland TK, Song WM, Huang SC-C, Ulrich JD, Sergushichev A, Beatty WL, et al (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell 170:649–663.e13. https://doi.org/10.1016/j.cell.2017.07.023PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G et al (2017) TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 18:1186–1198PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581.e9. https://doi.org/10.1016/j.immuni.2017.08.008CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA et al (2009) Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Dagher NN, Najafi AR, Kayala KMN, Elmore MRP, White TE, Medeiros R et al (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139. https://doi.org/10.1186/s12974-015-0366-9CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, Vargas-Caballero M et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139:891–907PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, Blurton-Jones M et al (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139:1265–1281PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sosna J, Philipp S, Albay R, Reyes-Ruiz JM, Baglietto-Vargas D, LaFerla FM et al (2018) Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener 13:11. https://doi.org/10.1186/s13024-018-0244-xCrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346. https://doi.org/10.1101/cshperspect.a006346CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216PubMedCrossRefGoogle Scholar
  148. 148.
    Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM, Mitteregger G et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG et al (2016) TAM receptors regulate multiple features of microglial physiology. Nature 532:240–244PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361CrossRefGoogle Scholar
  152. 152.
    Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351PubMedCrossRefGoogle Scholar
  153. 153.
    Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114:11524–11529PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G et al (2017) TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener 12:74. https://doi.org/10.1186/s13024-017-0216-6CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–E1905. https://doi.org/10.1073/pnas.1800165115CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Yun SP, Kam T-I, Panicker N, Kim S, Oh Y, Park J-S et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615PubMedCrossRefGoogle Scholar
  163. 163.
    Mullard A (2018) Microglia-targeted candidates push the Alzheimer drug envelope. Nat Rev Drug Discov 17:303–305PubMedCrossRefGoogle Scholar
  164. 164.
    Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027PubMedCrossRefGoogle Scholar
  165. 165.
    Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630CrossRefGoogle Scholar
  166. 166.
    Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW et al (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3:89ra57. https://doi.org/10.1126/scitranslmed.3002156CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO et al (2012) Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid beta peptide. J Neurosci 32:15181–15192PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N et al (2017) Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 18:102–122PubMedCrossRefGoogle Scholar
  170. 170.
    Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H et al (2016) BIN1 regulates BACE1 intracellular trafficking and amyloid-beta production. Hum Mol Genet 25:2948–2958PubMedPubMedCentralGoogle Scholar
  171. 171.
    Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of Bin1 promotes the propagation of Tau pathology. Cell Rep 17:931–940PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A et al (2008) A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell 19:1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H et al (2017) Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry 22:874–883PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Schaefer A, van Duijn TJ, Majolee J, Burridge K, Hordijk PL (2017) Endothelial CD2AP binds the receptor ICAM-1 to control mechanosignaling, leukocyte adhesion, and the route of leukocyte diapedesis in vitro. J Immunol 198:4823–4836PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Kobayashi S, Sawano A, Nojima Y, Shibuya M, Maru Y (2004) The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J 18:929–931PubMedCrossRefGoogle Scholar
  176. 176.
    Shulman JM, Imboywa S, Giagtzoglou N, Powers MP, Hu Y, Devenport D et al (2014) Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet 23:870–877PubMedCrossRefGoogle Scholar
  177. 177.
    Kress C, Gautier-Courteille C, Osborne HB, Babinet C, Paillard L (2007) Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol Cell Biol 27:1146–1157PubMedCrossRefGoogle Scholar
  178. 178.
    Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344(Pt 2):375–383PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Bartl MM, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res 271:130–141PubMedCrossRefGoogle Scholar
  180. 180.
    Lakins JN, Poon S, Easterbrook-Smith SB, Carver JA, Tenniswood MPR, Wilson MR (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41:282–291PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Ramani VC, Hennings L, Haun RS (2008) Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 8:373. https://doi.org/10.1186/1471-2407-8-373CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y (2009) EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci 122:243–255PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Ivanov AI, Romanovsky AA (2006) Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 58:389–394PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Yasuda-Yamahara M, Rogg M, Frimmel J, Trachte P, Helmstaedter M, Schroder P et al (2018) FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 68–69:263–279PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Chapuis J, Flaig A, Grenier-Boley B, Eysert F, Pottiez V, Deloison G et al (2017) Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol 133:955–966PubMedCrossRefGoogle Scholar
  187. 187.
    Pinet V, Vergelli M, Martin R, Bakke O, Long EO (1995) Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature 375:603–606PubMedCrossRefGoogle Scholar
  188. 188.
    Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272:7727–7731PubMedCrossRefGoogle Scholar
  189. 189.
    Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L et al (2015) Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 521:357–361PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Gossett LA, Kelvin DJ, Sternberg EA, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Duriez B, Duquesnoy P, Escudier E, Bridoux A-M, Escalier D, Rayet I et al (2007) A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A 104:3336–3341PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Takatori S, Tomita T (2018) AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains: physiological functions and involvement in disease. Adv Exp Med Biol May 18. https://doi.org/10.1007/5584_2018_218. [Epub ahead of print]Google Scholar
  193. 193.
    Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T et al (2014) Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat Commun 5:3386. https://doi.org/10.1038/ncomms4386CrossRefPubMedGoogle Scholar
  194. 194.
    Kanatsu K, Hori Y, Takatori S, Watanabe T, Iwatsubo T, Tomita T (2016) Partial loss of CALM function reduces Aβ42 production and amyloid deposition in vivo. Hum Mol Genet 25:3988–3997PubMedCrossRefGoogle Scholar
  195. 195.
    Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K et al (2015) Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M et al (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998. https://doi.org/10.1038/ncomms5998CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T et al (2001) Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 276:38595–38601PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Fazzari P, Horre K, Arranz AM, Frigerio CS, Saito T, Saido TC et al (2017) PLD3 gene and processing of APP. Nature 541:E1–E2. https://doi.org/10.1038/nature21030CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Soni D, Regmi SC, Wang D-M, DebRoy A, Zhao Y-Y, Vogel SM et al (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca(2+) entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003–L1017. https://doi.org/10.1152/ajplung.00008.2017CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383:547–550PubMedCrossRefGoogle Scholar
  201. 201.
    Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H et al (2003) RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. J Cell Sci 116:4159–4168PubMedCrossRefGoogle Scholar
  202. 202.
    Li X-F, Kraev AS, Lytton J (2002) Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem 277:48410–48417PubMedCrossRefGoogle Scholar
  203. 203.
    Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K et al (2001) LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol 21:1501–1506PubMedCrossRefGoogle Scholar
  204. 204.
    Klinger SC, Hojland A, Jain S, Kjolby M, Madsen P, Svendsen AD et al (2016) Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells. FEBS J 283:2476–2493PubMedCrossRefGoogle Scholar
  205. 205.
    Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–13466PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Caglayan S, Takagi-Niidome S, Liao F, Carlo A-S, Schmidt V, Burgert T et al (2014) Lysosomal sorting of amyloid - by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6:223ra20. https://doi.org/10.1126/scitranslmed.3007747CrossRefPubMedGoogle Scholar
  207. 207.
    Takahashi K, Rochford CDP, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647–657PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    He F, Umehara T, Saito K, Harada T, Watanabe S, Yabuki T et al (2010) Structural insight into the zinc finger CW domain as a histone modification reader. Structure 18:1127–1139PubMedCrossRefGoogle Scholar
  209. 209.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Guillot-Sestier M-V, Doty KR, Gate D, Rodriguez J, Leung BP, Rezai-Zadeh K et al (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534–548PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B et al (2015) CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J Clin Invest 125:365–378PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Choi S-H, Aid S, Caracciolo L, Sakura Minami S, Niikura T, Matsuoka Y et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    vom Berg J, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive decline. Nat Med 18:1812–1819PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32:17321–17331PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE (2011) Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol Neurodegener 6:16. https://doi.org/10.1186/1750-1326-6-16CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE et al (2010) IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol 184:5333–5343PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C et al (2010) Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J 24:548–559PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 24:3093–3102PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Chakrabarty P, Tianbai L, Herring A, Ceballos-Diaz C, Das P, Golde TE (2012) Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol Neurodegener 7:36. https://doi.org/10.1186/1750-1326-7-36CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Liu Z, Condello C, Schain A, Harb R, Grutzendler J (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid- phagocytosis. J Neurosci 30:17091–17101PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S (2008) Powerful beneficial effects of macrophage colony-stimulating factor on -amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 132:1078–1092CrossRefGoogle Scholar
  224. 224.
    Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J et al (2008) Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C et al (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389:603–606PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Wyss-Coray T, Lin C, Yan F, Yu G-Q, Rohde M, McConlogue L et al (2001) TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Jiang T, Zhang Y-D, Gao Q, Zhou J-S, Zhu X-C, Lu H et al (2016) TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol 132:667–683PubMedCrossRefGoogle Scholar
  228. 228.
    Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Huang F, Buttini M, Wyss-Coray T, McConlogue L, Kodama T, Pitas RE et al (1999) Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors. Am J Pathol 155:1741–1747PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L et al (2013) Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4:2030. https://doi.org/10.1038/ncomms3030CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ et al (2013) Microglial Beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79:873–886PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:6208–6220PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA (2008) Complement C3 deficiency leads to accelerated amyloid plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci 28:6333–6341PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ et al (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9(392):eaaf6295. https://doi.org/10.1126/scitranslmed.aaf6295CrossRefPubMedGoogle Scholar
  235. 235.
    Song M, Jin J, Lim J-E, Kou J, Pattanayak A, Rehman JA et al (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92. https://doi.org/10.1186/1742-2094-8-92CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Zhu Y, Hou H, Rezai-Zadeh K, Giunta B, Ruscin A, Gemma C et al (2011) CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer’s disease mice. J Neurosci 31:1355–1365PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sho Takatori
    • 1
  • Wenbo Wang
    • 1
  • Akihiro Iguchi
    • 1
  • Taisuke Tomita
    • 1
    Email author
  1. 1.Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan

Personalised recommendations