Advertisement

The Role of Biomarkers in Alzheimer’s Disease Drug Development

  • Jeffrey CummingsEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)

Abstract

Biomarkers have a key role in Alzheimer’s disease (AD) drug development. Biomarkers can assist in diagnosis, demonstrate target engagement, support disease modification, and monitor for safety. The amyloid (A), tau (T), neurodegeneration (N) Research Framework emphasizes brain imaging and CSF measures relevant to disease diagnosis and staging and can be applied to drug development and clinical trials. Demonstration of target engagement in Phase 2 is critical before advancing a treatment candidate to Phase 3. Trials with biomarker outcomes are shorter and smaller than those required to show clinical benefit and are important to understanding the biological impact of an agent and inform go/no-go decisions. Companion diagnostics are required for safe and effective use of treatments and may emerge in AD drug development programs. Complementary biomarkers inform the use of therapies but are not mandatory for use. Biomarkers promise to de-risk AD drug development, attract sponsors to AD research, and accelerate getting new drugs to those with or at risk for AD.

Keywords

Alzheimer’s disease Drug development Clinical trials Biomarker Positron-emission tomography Amyloid Tau Neurodegeneration 

Notes

Acknowledgment

J.C. acknowledges funding from the National Institute of General Medical Sciences (Grant: P20GM109025) and support from Keep Memory Alive.

Declaration of Interest: J.C. has provided consultation to Acadia, Avanir, BiOasis Technologies, Biogen, Boehringer-Ingelheim, Bracket, Eisai, Genentech, Grifols, Intracellular Therapies, Kyowa, Lilly, Lundbeck, Medavante, Merck, Nutricia, Otsuka, Pfizer, QR, Resverlogix, Samus, Servier, Suven, Takeda, Toyama, and United Neuroscience companies. J.C. acknowledges the funding from the National Institute of General Medical Sciences (Grant: P20GM109025) and support from Keep Memory Alive.

References

  1. 1.
    Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056. https://doi.org/10.1038/nrdp.2015.56CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer’s disease. Lancet 388:505–517PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509CrossRefGoogle Scholar
  4. 4.
    Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M et al (2015) Alzheimer’s Disease International World Alzheimer Report 2015: the global impact of dementia, an analysis of prevalence, incidence, cost and trends. London, 2015. https://www.alz.co.uk/research/world-report-2015
  5. 5.
    Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37–43PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cummings J, Ritter A, Zhong K (2018) Clinical trials for disease-modifying therapies in Alzheimer’s disease: a primer, lessons learned, and a blueprint for the future. J Alzheimers Dis 64:S3–S22PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA Research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cummings J (2018) The National Institute on Aging-Alzheimer’s Association framework on Alzheimer’s disease: application to clinical trials. Alzheimers Dement Jun 21. https://doi.org/10.1016/j.jalz.2018.05.006. [Epub ahead of print]CrossRefGoogle Scholar
  10. 10.
    U.S. Food and Drug Administration (2018) Early Alzheimer’s disease: developing drugs for treatment, guidance for industry. Office of Communications, Division of Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM596728.pdfGoogle Scholar
  11. 11.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  12. 12.
    U.S. Food and Drug Administration (2014) In vitro companion diagnostic devices: guidance for industry and Food and Drug Administration staff. Center for Drug Evaluation and Research, Division of Drug Information, Silver Spring, MD. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM262327.pdfGoogle Scholar
  13. 13.
    Kraus VB (2018) Biomarkers as drug development tools: discovery, validation, qualification and use. Nat Rev Rheumatol 14:354–362PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    FDA-NIH Biomarker Working Group (2016) BEST (Biomarkers, EndpointS, and other Tools) resource. Food and Drug Administration and National Institutes of Health, Silver Spring, MDGoogle Scholar
  15. 15.
    Day M, Rutkowski JL, Feuerstein GZ (2009) Translational medicine--a paradigm shift in modern drug discovery and development: the role of biomarkers. Adv Exp Med Biol 655:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cummings J (2017) Disease modification and neuroprotection in neurodegenerative disorders. Transl Neurodegener 6:25. https://doi.org/10.1186/s40035-017-0096-2CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cummings JL, Fox N (2017) Defining disease modification for Alzheimer’s disease clinical trials. J Prev Alzheimers Dis 4:109–115PubMedPubMedCentralGoogle Scholar
  18. 18.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944CrossRefGoogle Scholar
  19. 19.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Landau SM, Horng A, Fero A, Jagust WJ, Alzheimer’s Disease Neuroimaging Initiative (2016) Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86:1377–1385PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sevigny J, Suhy J, Chiao P, Chen T, Klein G, Purcell D et al (2016) Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials: experience in a phase 1b clinical trial. Alzheimer Dis Assoc Disord 30:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wisse LEM, Butala N, Das SR, Davatzikos C, Dickerson BC, Vaishnavi SN et al (2015) Suspected non-AD pathology in mild cognitive impairment. Neurobiol Aging 36:3152–3162PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ballard C, Atri A, Boneva N, Cummings JL, Frolich L, Molinuevo JL et al (2018) Predictors of Alzheimer disease progression for enrichment of clinical trials: analysis of placebo data from a phase 3 program (submitted)Google Scholar
  24. 24.
    Ellendt S, Vobeta B, Kohn N, Wagels L, Goerlich KS, Drexler E et al (2017) Predicting stability of mild cognitive impairment (MCI): findings of a community based sample. Curr Alzheimer Res 14:608–619PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bangen KJ, Clark AL, Werhane M, Edmonds EC, Nation DA, Evangelista N et al (2016) Cortical amyloid burden differences across empirically-derived mild cognitive impairment subtypes and interaction with APOE varepsilon4 genotype. J Alzheimers Dis 52:849–861PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ et al (2006) Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 63:674–681PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Palmqvist S, Mattsson N, Hansson O, Alzheimer’s Disease Neuroimaging Initiative (2016) Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain 139:1226–1236PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Insel PS, Palmqvist S, Mackin RS, Nosheny RL, Hansson O, Weiner MW et al (2016) Assessing risk for preclinical beta-amyloid pathology with APOE, cognitive, and demographic information. Alzheimers Dement (Amst) 4:76–84Google Scholar
  32. 32.
    Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 4:195–214Google Scholar
  33. 33.
    Farlow M, Gracon SI, Hershey LA, Lewis KW, Sadowsky CH, Dolan-Ureno J (1992) A controlled trial of tacrine in Alzheimer’s disease. The Tacrine Study Group. JAMA 268:2523–2529PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT (1998) A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology 50:136–145PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C et al (2014) Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 41:615–631PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cummings JL (2008) Optimizing phase II of drug development for disease-modifying compounds. Alzheimers Dement 4:S15–S20PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G et al (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431PubMedCrossRefGoogle Scholar
  38. 38.
    Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U et al (2018) Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 17:167–181PubMedCrossRefGoogle Scholar
  39. 39.
    Simon GM, Niphakis MJ, Cravatt BF (2013) Determining target engagement in living systems. Nat Chem Biol 9:200–205PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W et al (2013) Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med 5:189ra77. https://doi.org/10.1126/scitranslmed.3005615CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bateman RJ, Siemers ER, Mawuenyega KG, Wen G, Browning KR, Sigurdson WC et al (2009) A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann Neurol 66:48–54PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fleisher AS, Raman R, Siemers ER, Becerra L, Clark CM, Dean RA et al (2008) Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol 65:1031–1038PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF et al (2016) The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 8:363ra150. https://doi.org/10.1126/scitranslmed.aad9704CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B et al (2018) Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med 378:1691–1703PubMedCrossRefGoogle Scholar
  47. 47.
    Portelius E, Zetterberg H, Dean RA, Marcil A, Bourgeois P, Nutu M et al (2012) Amyloid-beta(1-15/16) as a marker for gamma-secretase inhibition in Alzheimer’s disease. J Alzheimers Dis 31:335–341PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sato C, Barthelemy NR, Mawuenyega KG, Patterson BW, Gordon BA, Jockel-Balsarotti J et al (2018) Tau kinetics in neurons and the human central nervous system. Neuron 97:1284–1298.e7. https://doi.org/10.1016/j.neuron.2018.04.035CrossRefPubMedGoogle Scholar
  49. 49.
    Coughlin D, Irwin DJ (2017) Emerging diagnostic and therapeutic strategies for tauopathies. Curr Neurol Neurosci Rep 17:72. https://doi.org/10.1007/s11910-017-0779-1CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P et al (2017) Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55:813–822PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M et al (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378:321–330PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Cummings JL, Cohen S, van Dyck CH, Brody M, Curtis C, Cho W et al (2018) ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90:e1889–e1e97. https://doi.org/10.1212/WNL.0000000000005550CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee SJ, Nam E, Lee HJ, Savelieff MG, Lim MH (2017) Towards an understanding of amyloid-beta oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev 46:310–323PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brosseron F, Traschutz A, Widmann CN, Kummer MP, Tacik P, Santarelli F et al (2018) Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther 10:25. https://doi.org/10.1186/s13195-018-0353-3CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yarchoan M, Louneva N, Xie SX, Swenson FJ, Hu W, Soares H et al (2013) Association of plasma C-reactive protein levels with the diagnosis of Alzheimer’s disease. J Neurol Sci 333:9–12PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Serpente M, Bonsi R, Scarpini E, Galimberti D (2014) Innate immune system and inflammation in Alzheimer’s disease: from pathogenesis to treatment. Neuroimmunomodulation 21:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Muszynski P, Groblewska M, Kulczynska-Przybik A, Kulakowska A, Mroczko B (2017) YKL-40 as a potential biomarker and a possible target in therapeutic strategies of Alzheimer’s disease. Curr Neuropharmacol 15:906–917PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Passamonti L, Rodriguez PV, Hong YT, Allinson KSJ, Bevan-Jones WR, Williamson D et al (2018) [(11)C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology 90:e1989–e1996PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4:27–36PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Montine TJ, Peskind ER, Quinn JF, Wilson AM, Montine KS, Galasko D (2011) Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent Alzheimer’s disease as identified by biomarkers. NeuroMolecular Med 13:37–43PubMedCrossRefGoogle Scholar
  63. 63.
    Kester MI, Scheffer PG, Koel-Simmelink MJ, Twaalfhoven H, Verwey NA, Veerhuis R et al (2012) Serial CSF sampling in Alzheimer’s disease: specific versus non-specific markers. Neurobiol Aging 33:1591–1598PubMedCrossRefGoogle Scholar
  64. 64.
    Nordstrom AL, Mansson M, Jovanovic H, Karlsson P, Halldin C, Farde L et al (2008) PET analysis of the 5-HT2A receptor inverse agonist ACP-103 in human brain. Int J Neuropsychopharmacol 11:163–171PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A et al (2014) Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383:533–540PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ballard C, Banister C, Khan Z, Cummings J, Demos G, Coate B et al (2018) Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s disease psychosis: a phase 2, randomised, placebo-controlled, double-blind study. Lancet Neurol 17:213–222PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Cummings J, Ballard C, Tariot P, Owen R, Foff E, Youakim J et al (2018) Pimavanserin: potential treatment for dementia-related psychosis. J Prev Alzheimer Dis 5(4):253-258Google Scholar
  68. 68.
    Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature 537:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T et al (2017) A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 9:95. https://doi.org/10.1186/s13195-017-0318-yCrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cummings JL, Zhong K, Kinney JW, Heaney C, Moll-Tudla J, Joshi A et al (2016) Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimers Res Ther 8:4. https://doi.org/10.1186/s13195-016-0173-2CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cummings J, Zhong K, Cordes D (2017) Drug development in Alzheimer’s disease: the role of default mode network assessment in phase II. US Neurol 13:67–69CrossRefGoogle Scholar
  72. 72.
    Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539:187–196PubMedCrossRefGoogle Scholar
  73. 73.
    Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD et al (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133:1352–1367PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    McLaren DG, Sreenivasan A, Diamond EL, Mitchell MB, Van Dijk KR, Deluca AN et al (2012) Tracking cognitive change over 24 weeks with longitudinal functional magnetic resonance imaging in Alzheimer’s disease. Neurodegener Dis 9:176–186PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Dickerson BC, Sperling RA (2009) Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol 21:63–75PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Atri A, O’Brien JL, Sreenivasan A, Rastegar S, Salisbury S, DeLuca AN et al (2011) Test-retest reliability of memory task functional magnetic resonance imaging in Alzheimer disease clinical trials. Arch Neurol 68:599–606PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sutton BP, Goh J, Hebrank A, Welsh RC, Chee MW, Park DC (2008) Investigation and validation of intersite fMRI studies using the same imaging hardware. J Magn Reson Imaging 28:21–28PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Soares HD (2010) The use of mechanistic biomarkers for evaluating investigational CNS compounds in early drug development. Curr Opin Investig Drugs 11:795–801PubMedGoogle Scholar
  80. 80.
    Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging Initiative (2017) Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol 74:557–566PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Babic Leko M, Borovecki F, Dejanovic N, Hof PR, Simic G (2016) Predictive value of cerebrospinal fluid visinin-like protein-1 levels for Alzheimer’s disease early detection and differential diagnosis in patients with mild cognitive impairment. J Alzheimers Dis 50:765–778PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM et al (2016) Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurol 73:561–571PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pereira JB, Westman E, Hansson O, Alzheimer’s Disease Neuroimaging Initiative (2017) Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiol Aging 58:14–29PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD et al (2008) MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 71:743–749PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Molinuevo JL, Blennow K, Dubois B, Engelborghs S, Lewczuk P, Perret-Liaudet A et al (2014) The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 10:808–817PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N (2018) The place of PET to assess new therapeutic effectiveness in neurodegenerative diseases. Contrast Media Mol Imaging 2018:7043578. https://doi.org/10.1155/2018/7043578CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry 159:738–745PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W et al (2010) Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. NeuroImage 51:654–664PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mega MS, Dinov ID, Porter V, Chow G, Reback E, Davoodi P et al (2005) Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose f 18 positron emission tomographic study. Arch Neurol 62:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Mercier J, Provins L, Valade A (2017) Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications. Drug Discov Today Technol 25:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF et al (2018) Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol 75(10):1215-1224PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kleinstreuer NC, Sullivan K, Allen D, Edwards S, Mendrick DL, Embry M et al (2016) Adverse outcome pathways: from research to regulation scientific workshop report. Regul Toxicol Pharmacol 76:39–50PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Arrowsmith J, Miller P (2013) Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov 12:569. https://doi.org/10.1038/nrd4090CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wilkinson D, Windfeld K, Colding-Jorgensen E (2014) Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 13:1092–1099PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z et al (2014) Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA 311:682–691PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT et al (2011) Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7:367–385PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    U.S. Food and Drug Administration (2014) Guidance for industry and FDA staff: qualification process for drug development tools. Division of Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD. https://www.fda.gov/downloads/drugs/guidances/ucm230597.pdfGoogle Scholar
  100. 100.
    Romero K, de MM, Frank D, Anthony M, Neville J, Kirby L et al (2009) The Coalition Against Major Diseases: developing tools for an integrated drug development process for Alzheimer’s and Parkinson’s diseases. Clin Pharmacol Ther 86:365–367PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hill DL, Schwarz AJ, Isaac M, Pani L, Vamvakas S, Hemmings R et al (2014) Coalition Against Major Diseases/European Medicines Agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s disease. Alzheimers Dement 10:421–429.e3. https://doi.org/10.1016/j.jalz.2013.07.003CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Arneric SP, Batrla-Utermann R, Beckett L, Bittner T, Blennow K, Carter L et al (2017) Cerebrospinal fluid biomarkers for Alzheimer’s disease: a view of the regulatory science qualification landscape from the Coalition Against Major Diseases CSF Biomarker Team. J Alzheimers Dis 55:19–35PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J (2015) Biomarker qualification: toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin Pharmacol Ther 98:34–46PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Gerlach CV, Derzi M, Ramaiah SK, Vaidya VS (2018) Industry perspective on biomarker development and qualification. Clin Pharmacol Ther 103:27–31PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jorgensen JT, Hersom M (2018) Clinical and regulatory aspects of companion diagnostic development in oncology. Clin Pharmacol Ther 103:999–1008PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Scheerens H, Malong A, Bassett K, Boyd Z, Gupta V, Harris J et al (2017) Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci 10:84–92PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836–841PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Relkin NR, Thomas RG, Rissman RA, Brewer JB, Rafii MS, van Dyck CH et al (2017) A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 88:1768–1775PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Fleisher AS, Truran D, Mai JT, Langbaum JB, Aisen PS, Cummings JL et al (2011) Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology 77:1263–1271PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D (2011) PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord 25:206–212PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Coric V, van Dyck CH, Salloway S, Andreasen N, Brody M, Richter RW et al (2012) Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 69:1430–1440PubMedCrossRefGoogle Scholar
  114. 114.
    Coric V, Salloway S, van Dyck CH, Dubois B, Andreasen N, Brody M et al (2015) Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol 72:1324–1333PubMedCrossRefGoogle Scholar
  115. 115.
    Liu E, Schmidt ME, Margolin R, Sperling R, Koeppe R, Mason NS et al (2015) Amyloid-beta 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology 85:692–700PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L et al (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572PubMedCrossRefGoogle Scholar
  117. 117.
    Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S et al (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352:2379–2388PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gauthier S, Aisen PS, Ferris SH, Saumier D, Duong A, Haine D et al (2009) Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: exploratory analyses of the MRI sub-group of the Alphase study. J Nutr Health Aging 13:550–557PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C et al (2010) Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304:1903–1911PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Galasko D, Bell J, Mancuso JY, Kupiec JW, Sabbagh MN, van DC et al (2014) Clinical trial of an inhibitor of RAGE-Abeta interactions in Alzheimer disease. Neurology 82:1536–1542PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1383–1391PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasUSA

Personalised recommendations