Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia

  • Melissa Quintero
  • Danijela Stanisic
  • Guilherme Cruz
  • João G. M. Pontes
  • Tássia Brena Barroso Carneiro Costa
  • Ljubica TasicEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)


Psychiatric disorders are some of the most impairing human diseases. Among them, bipolar disorder and schizophrenia are the most common. Both have complicated diagnostics due to their phenotypic, biological, and genetic heterogeneity, unknown etiology, and the underlying biological pathways, and molecular mechanisms are still not completely understood. Given the multifactorial complexity of these disorders, identification and implementation of metabolic biomarkers would assist in their early detection and diagnosis and facilitate disease monitoring and treatment responses. To date, numerous studies have utilized metabolomics to better understand psychiatric disorders, and findings from these studies have begun to converge. In this chapter, we briefly describe some of the metabolomic biomarkers found in these two disorders.


Psychiatric illness Mental disorders Schizophrenia Bipolar disorder Biomarkers Metabolomics 


  1. 1.
    Venigalla H, Mekala HM, Hassan M, Zain H (2017) An update on biomarkers in psychiatric disorders—are we aware, do we use in our clinical practice? Ment Health Fam Med 13:471–479Google Scholar
  2. 2.
    Boksa P (2013) A way forward for research on biomarkers for psychiatric disorders. J Psychiatry Neurosci 38(2):75–77PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gjerris A, Sørensen AS, Rafaelsen OJ, Werdelin L, Alling C, Linnoila M (1987) 5-HT and 5-HIAA in cerebrospinal fluid in depression. J Affect Disord 12(1):13–22PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ross RG, Olincy A, Harris JG, Sullivan B, Radant A (2000) Smooth pursuit eye movements in schizophrenia and attentional dysfunction: adults with schizophrenia, ADHD, and a normal comparison group. Biol Psychiatry 48(3):197–203PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Yeung PK (2018) Metabolomics and biomarkers for drug discovery. Metabolites 8(1)PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lista S, Giegling I, Rujescu D (2014) Schizophrenia: blood-serum-plasma metabolomics. In: Martins-de-Souza D (ed) Proteomics and metabolomics in psychiatry. Karger Publishers, Basel, p 27–44. ISBN-10: 3318025992Google Scholar
  7. 7.
    Holmes E, Tsang TM, Huang JT-J, Leweke FM, Koethe D, Gerth CW et al (2006) Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8):e327. Scholar
  8. 8.
    He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J et al (2012) Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2:e149. Scholar
  9. 9.
    Zheng P, Wei Y-D, Yao G-E, Ren G-P, Guo J, Zhou C-J et al (2013) Novel urinary biomarkers for diagnosing bipolar disorder. Metabolomics 9(4):800–808CrossRefGoogle Scholar
  10. 10.
    Chen J-J, Zhou C-J, Liu Z, Fu Y-Y, Zheng P, Yang D-Y et al (2015) Divergent urinary metabolic phenotypes between major depressive disorder and bipolar disorder identified by a combined GC-MS and NMR spectroscopic metabonomic approach. J Proteome Res 14(8):3382–3389PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sethi S, Brietzke E (2015) Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol 19(3):yv096. Scholar
  12. 12.
    Lindon JC, Holmes E, Nicholson JK (2003) Peer reviewed: so what’s the deal with metabonomics? Anal Chem 75(17):384A–391APubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Friedhoff AJ, van Winkle E (1962) The characteristics of an amine found in urine of schizophrenic patients. J Nerv Ment Dis 135:550–555PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Boulton AA, Pollitt RJ, Majer JR (1967) Identity of a urinary “pink spot” in schizophrenia and Parkinson’s disease. Nature 215:132–134PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Money TT, Bousman CA (2013) Metabolomics of psychotic disorders. Metabolomics 3:117. Scholar
  16. 16.
    Kohler I, Hankemeier T, van der Graaf PH, Knibbe CAJ, van Hasselt JGC (2017) Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. Eur J Pharm Sci 109S:S15–S21PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Alonso A, Marsal S, Julià A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23.
  20. 20.
    Riekeberg E, Powers R (2017) New frontiers in metabolomics: from measurement to insight. F1000Res 6:1148. Scholar
  21. 21.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometrics Intellig Lab Syst 2(1):37–52CrossRefGoogle Scholar
  22. 22.
    Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831CrossRefGoogle Scholar
  23. 23.
    Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom 20(8-10):341–351CrossRefGoogle Scholar
  24. 24.
    Berrueta LA, Alonso-Salces RM, Héberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158(1-2):196–214PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Peng C-YJ, Lee KL, Ingersoll GM (2002) An introduction to logistic regression analysis and reporting. J Educ Res 96(1):3–14CrossRefGoogle Scholar
  26. 26.
    Merikangas KR, Jin R, He J-P, Kessler RC, Lee S, Sampson NA et al (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68(3):241–251PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kessler RC, Merikangas KR, Wang PS (2007) Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu Rev Clin Psychol 3:137–158PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sagar R, Pattanayak RD (2017) Potential biomarkers for bipolar disorder: where do we stand? Indian J Med Res 145(1):7–16PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR et al (2018) Bipolar disorders. Nat Rev Dis Primers 4:18008. Scholar
  30. 30.
    Hilty DM, Leamon MH, Lim RF, Kelly RH, Hales RE (2006) A review of bipolar disorder in adults. Psychiatry 3(9):43–55PubMedPubMedCentralGoogle Scholar
  31. 31.
    Shorter E (2009) The history of lithium therapy. Bipolar Disord 11(Suppl2):4–9PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Coppen A, Healy D (1996) Biological psychiatry in Britain. In: Healy D (ed) The psychopharmacologists: interviews by David Healey. Chapman and Hall, London, pp 265–286Google Scholar
  33. 33.
    Marwaha S, Sal N, Bebbington P (2014) Adult psychiatric morbidity survey—bipolar disorder. In: NHS digital. Accessed 27 Sep 2018
  34. 34.
    Murray CJL, Lopez AD (1996) The global burden of disease. Harvard University Press, Cambridge, MA. ISBN:0-9655466-0-8Google Scholar
  35. 35.
    Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Aust 2(10):349–352PubMedPubMedCentralGoogle Scholar
  36. 36.
    Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. CNS Drugs 27(2):135–153PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sethi S, Pedrini M, Rizzo LB, Zeni-Graiff M, Mas CD, Cassinelli AC et al (2017) 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling. Int J Bipolar Disord 5(1):23.
  38. 38.
    Chen J-J, Liu Z, Fan S-H, Yang D-Y, Zheng P, Shao W-H et al (2014) Combined application of NMR- and GC-MS-based metabonomics yields a superior urinary biomarker panel for bipolar disorder. Sci Rep 4:5855. Scholar
  39. 39.
    Sussulini A, Prando A, Maretto DA, Poppi RJ, Tasic L, Banzato CEM et al (2009) Metabolic profiling of human blood serum from treated patients with bipolar disorder employing 1H NMR spectroscopy and chemometrics. Anal Chem 81(23):9755–9763PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu M-L, Zheng P, Liu Z, Xu Y, Mu J, Guo J et al (2014) GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Mol BioSyst 10(9):2398–2406PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Xu X-J, Zheng P, Ren G-P, Liu M-L, Mu J, Guo J et al (2014) 2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder. Mol Biosyst 10(4):813–819PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Soeiro-de-Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa LC et al (2015) Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol 25(12):2221–2229PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C et al (2018) Anterior cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: a proton magnetic resonance spectroscopy study. Biol Psychiatry Cogn Neurosci Neuroimaging 3(12):985-991Google Scholar
  44. 44.
    Atagün Mİ, Şıkoğlu EM, Can SS, Uğurlu GK, Kaymak SU, Çayköylü A et al (2018) Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: a proton magnetic resonance spectroscopy study. J Affect Disord 235:15–19PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chen J-J, Huang H, Zhao L-B, Zhou D-Z, Yang Y-T, Zheng P et al (2014) Sex-specific urinary biomarkers for diagnosing bipolar disorder. PLoS One 9(12):e115221. Scholar
  46. 46.
    Haarman BCM, Riemersma-Van der Lek RF (2016) Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder. Bipolar Disord 56:21–33Google Scholar
  47. 47.
    Tannous J, Cao B, Stanley J, Amaral-Silva H, Soares J (2018) Metabolite abnormalities in the anterior white matter of patients with pediatric bipolar disorder. Biol Psychiatry 83(9, Supplement):S263. Scholar
  48. 48.
    Yoshimi N, Futamura T, Kakumoto K, Salehi AM, Sellgren CM, Holmén-Larsson J et al (2016) Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin 5:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Atagün Mİ, Şıkoğlu EM, Soykan Ç, Serdar Süleyman C, Ulusoy-Kaymak S, Çayköylü A et al (2017) Perisylvian GABA levels in schizophrenia and bipolar disorder. Neurosci Lett 637:70–74PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kageyama Y, Kasahara T, Morishita H, Mataga N, Deguchi Y, Tani M et al (2017) Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin Neurosci 71(2):115–123PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Poletti S, Myint AM, Schüetze G, Bollettini I, Mazza E, Grillitsch D et al (2018) Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 268(2):157–168PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yoshimi N, Futamura T, Bergen SE, Iwayama Y, Ishima T, Sellgren C et al (2016) Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 21(11):1504–1510PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M et al (2001) Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24(4):359–369PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ribeiro HC, Klassen A, Pedrini M, Carvalho MS, Rizzo LB, Noto MN et al (2017) A preliminary study of bipolar disorder type I by mass spectrometry-based serum lipidomics. Psychiatry Res 258:268–273PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Liu M-L, Zhang X-T, Du X-Y, Fang Z, Liu Z, Xu Y et al (2015) Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomic study. J Transl Med 13:226.
  56. 56.
    Atack JR, Rapoport SI, Varley CL (1993) Characterization of inositol monophosphatase in human cerebrospinal fluid. Brain Res 613(2):305–308PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Manji HK, Potter WZ, Lenox RH (1995) Signal transduction pathways. Molecular targets for lithium’s actions. Arch Gen Psychiatry 52(7):531–543PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yüksel C, Öngür D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68(9):785–794PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35(4):245–296PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen H-H et al (2007) Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 9(Suppl 1):119–127PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Oertel-Knöchel V, Reinke B, Alves G, Jurcoane A, Wenzler S, Prvulovic D et al (2014) Frontal white matter alterations are associated with executive cognitive function in euthymic bipolar patients. J Affect Disord 155:223–233PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lu LH, Zhou XJ, Keedy SK, Reilly JL, Sweeney JA (2011) White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord 13(7-8):604–613PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Benedetti F, Yeh P-H, Bellani M, Radaelli D, Nicoletti MA, Poletti S et al (2011) Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry 69(4):309–317PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. PT 39(9):638–645Google Scholar
  67. 67.
    Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD et al (2015) Schizophrenia. Nat Rev Dis Primers 1:15067.
  69. 69.
    Lavretsky H (2008) History of schizophrenia as a psychiatric disorder. In: Mueser KT, Jeste DV (eds) Clinical handbook of schizophrenia. Guilford Publications, New York, pp 3–13. ISBN:9781609182373Google Scholar
  70. 70.
    Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni SE, Saarni SI et al (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3(3):19. Scholar
  72. 72.
    Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K et al (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18(1):67–78PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al (2003) Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60(6):572–576PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Palomino A, González-Pinto A, Aldama A, González-Gómez C, Mosquera F, González-García G et al (2007) Decreased levels of plasma glutamate in patients with first-episode schizophrenia and bipolar disorder. Schizophr Res 95(1-3):174–178PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Prell GD, Green JP, Kaufmann CA, Khandelwal JK, Morrishow AM, Kirch DG et al (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 14(2):93–104PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y et al (2011) Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 10(12):5433–5443PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cai H-L, Zhu R-H, Li H-D (2010) Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 396(1):103–111PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y et al (2014) Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One 9(7):e101652. Scholar
  79. 79.
    Phillips M, Sabas M, Greenberg J (1993) Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J Clin Pathol 46(9):861–864PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    AI Awam K, Haußleiter IS, Dudley E, Donev R, Brüne M, Juckel G et al (2015) Multiplatform metabolome and proteome profiling identifies serum metabolite and protein signatures as prospective biomarkers for schizophrenia. J Neural Transm 122(Suppl 1):S111–S122CrossRefGoogle Scholar
  81. 81.
    Creveling CR, Daly JW (1967) Identification of 3,4-dimethoxyphenethylamine from schizophrenic urine by mass spectrometry. Nature 216(5111):190–191PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ross BM, Shah S, Peet M (2011) Increased breath ethane and pentane concentrations in currently unmedicated patients with schizophrenia. OJPsych 1(01):1–7CrossRefGoogle Scholar
  83. 83.
    Koike S, Bundo M, Iwamoto K, Suga M, Kuwabara H, Ohashi Y et al (2014) A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Transl Psychiatry 4:e379. Scholar
  84. 84.
    Baruah S, Waziri R, Hegwood TS, Mallis LM (1991) Plasma serine in schizophrenics and controls measured by gas chromatography-mass spectrometry. Psychiatry Res 37(3):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Petrovchich I, Sosinsky A, Konde A, Archibald A, Henderson D, Maletic-Savatic M et al (2016) Metabolomics in schizophrenia and major depressive disorder. Front Biol 11(3):222–231CrossRefGoogle Scholar
  86. 86.
    Ito C (2004) The role of the central histaminergic system on schizophrenia. Drug News Perspect 17(6):383–387PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM et al (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12(10):934–945PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF et al (2010) High dose D-serine in the treatment of schizophrenia. Schizophr Res 121(1-3):125–130PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM (2012) D-serine and schizophrenia: an update. Expert Rev Neurother 12(7):801–812PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Nunes de Paiva MJ, Menezes HC, de Lourdes CZ (2014) Sampling and analysis of metabolomes in biological fluids. Analyst 139(15):3683–3694PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Li N, Song YP, Tang H, Wang Y (2016) Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch Biochem Biophys 589:4–9PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pontes JGM, Brasil AJM, Cruz GCF, de Souza RN, Tasic L (2017) NMR-based metabolomics strategies: plants, animals and humans. Anal Methods 9:1078–1096CrossRefGoogle Scholar
  93. 93.
    Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pontes JGM, Brasil AJM, Cruz GCF, de Souza RN, Tasic L (2017) 1H NMR metabolomic profiling of human and animal blood serum samples. Methods Mol Biol 1546:275–282PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6(2):443–458PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Barbosa BS, Martins LG, Costa TBBC, Cruz G, Tasic L (2018) Qualitative and quantitative NMR approaches in blood serum lipidomics. Methods Mol Biol 1735:365–379PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Stoop MP, Coulier L, Rosenling T, Shi S, Smolinska AM, Buydens L et al (2010) Quantitative proteomics and metabolomics analysis of normal human cerebrospinal fluid samples. Mol Cell Proteomics 9(9):2063–2075PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K, Shinozaki K et al (2013) PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol 54(2):e5–e5. Scholar
  100. 100.
    Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2007) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162–164PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2012) Databases and software for NMR-based metabolomics. Curr Metabolomics 1:28–40Google Scholar
  106. 106.
    Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81(8):3079–3086PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395.
  108. 108.
    Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Anal Chem 78(3):779–787CrossRefGoogle Scholar
  109. 109.
    Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN (2007) Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem 79(3):966–973PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Chen W, Ma C, Miao A, Pang S, Qi D, Wang W (2017) Chemometric methods for the analysis of graftage-related black tea aroma variation by solid phase mirco-extraction and gas chromatography-mass spectrometry. Agilent Technologies.
  111. 111.
    Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Liu M, Mao X, Ye C, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132(1):125–129CrossRefGoogle Scholar
  113. 113.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefGoogle Scholar
  114. 114.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691CrossRefGoogle Scholar
  115. 115.
    Sethi S, Hayashi MAF, Barbosa BS, Pontes JGM, Tasic L, Brietzke E (2017) Lipidomics, biomarkers, and schizophrenia: a current perspective. Adv Exp Med Biol 965:265–290PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Nagana Gowda GA, Raftery D (2017) Recent advances in NMR-based metabolomics. Anal Chem 89(1):490–510PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R et al (2015) Combining DI-ESI–MS and NMR datasets for metabolic profiling. Metabolomics 11(2):391–402PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    López-López Á, López-Gonzálvez Á, Barker-Tejeda TC, Barbas C (2018) A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn 18(6):557–575PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N et al (2011) Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 400(7):1933–1943PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Amstalden Van Hove ER, Smith DF, Heeren RMA (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bodzon-Kulakowska A, Sude P (2016) Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Espectrom Rev 35(1):147–169CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Melissa Quintero
    • 1
  • Danijela Stanisic
    • 1
  • Guilherme Cruz
    • 1
  • João G. M. Pontes
    • 2
  • Tássia Brena Barroso Carneiro Costa
    • 1
  • Ljubica Tasic
    • 1
    Email author
  1. 1.Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Laboratory of Microbial Chemical Biology, Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations