Proteomic Markers for Depression

  • Licia C. Silva-Costa
  • Pamela T. Carlson
  • Paul C. Guest
  • Valéria de Almeida
  • Daniel Martins-de-SouzaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)


Major depressive disorder is a multifactorial disease, with molecular mechanisms not fully understood. A breakthrough could be reached with a panel of diagnostic biomarkers, which could be helpful to stratify patients and guide physicians to a better therapeutic choice, reducing the time between diagnostic and remission. This review brings the most recent works in proteomic biomarkers and highlights several potential proteins that could compose a panel of biomarkers to diagnostic and response to medication. These proteins are related to immune, inflammatory, and coagulatory systems and may also be linked to energy metabolism, oxidative stress, cell communication, and oligodendrogenesis.


Major depressive disorder Mass spectrometry Antidepressants Drug response 



The authors thank FAPESP (Sao Paulo Research Foundation, grants 2013/08711-3, 2017/18242-1 2017/25588-1 and 2018/03422-7) and Serrapilheira Institute (grant number Serra-1709-16349) for funding. We also thank CAPES (Coordination for the Improvement of Higher Education Personnel) for the scholarship 88887.179832/2018-00. The authors thank Prof. Brett Vern Carlson (Technological Institute of Aeronautics (ITA)) for assistance with the manuscript.


  1. 1.
    Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G et al (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90. Scholar
  2. 2.
    World Health Organization (2017) Depression and other common mental disorders: global health estimates. World Heal Organ. 1–24. doi: CC BY-NC-SA 3.0 IGOGoogle Scholar
  3. 3.
    Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman ATF, Penninx BWJH (2013) Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 18:692–699. Scholar
  4. 4.
    KS A-H (2012) Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 6:369–388. Scholar
  5. 5.
    Souery D, Amsterdam J, de Montigny C, Lecrubier Y, Montgomery S, Lipp O et al (1999) Treatment resistant depression: methodological overview and operational criteria. Eur Neuropsychopharmacol 9:83–91PubMedCrossRefGoogle Scholar
  6. 6.
    Paris J (2014) The mistreatment of major depressive disorder. Can J Psychiatry 59:148–151. Scholar
  7. 7.
    Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. Scholar
  8. 8.
    Striegel-Moore R (2011) Developing an evidence-based classification of eating disorders: scientific findings for DSM-5, 1st edn. American Psychiatric Publishing, Washington, DC. ISBN:9780890426661Google Scholar
  9. 9.
    Stassen HH, Angst J, Delini-Stula A (1997) Delayed onset of action of antidepressant drugs? Survey of recent results. Eur Psychiatry 12:166–176PubMedCrossRefGoogle Scholar
  10. 10.
    Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200PubMedCrossRefGoogle Scholar
  11. 11.
    Duric V, Duman RS (2013) Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 70:39–53PubMedCrossRefGoogle Scholar
  12. 12.
    Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 149:999–1010PubMedCrossRefGoogle Scholar
  13. 13.
    Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87. Scholar
  14. 14.
    Lopizzo N, Bocchio Chiavetto L, Cattane N, Plazzotta G, Tarazi FI, Pariante CM et al (2015) Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front Psychiatry 6:68. Scholar
  15. 15.
    López-Muñoz F, Alamo C (2009) Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 15:1563–1586PubMedCrossRefGoogle Scholar
  16. 16.
    Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522CrossRefGoogle Scholar
  17. 17.
    Paul IA, Skolnick P (2003) Glutamate and depression. Ann N Y Acad Sci 1003:250–272PubMedCrossRefGoogle Scholar
  18. 18.
    Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77PubMedCrossRefGoogle Scholar
  19. 19.
    Schiepers OJG, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217PubMedCrossRefGoogle Scholar
  20. 20.
    Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19:11–38PubMedCrossRefGoogle Scholar
  21. 21.
    Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW (2008) Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 29:1380–1393PubMedCrossRefGoogle Scholar
  22. 22.
    Hayley S (2014) The neuroimmune-neuroplasticity interface and brain pathology. Front Cell Neurosci 8:419. Scholar
  23. 23.
    Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109PubMedCrossRefGoogle Scholar
  24. 24.
    Rush AJ (2007) The varied clinical presentations of major depressive disorder. J Clin Psychiatry 68(Suppl 8):4–10PubMedGoogle Scholar
  25. 25.
    Ostergaard SD, Jensen SOW, Bech P (2011) The heterogeneity of the depressive syndrome: when numbers get serious. Acta Psychiatr Scand 124:495–496686PubMedCrossRefGoogle Scholar
  26. 26.
    Wang PS, Insel TR (2010) NIMH-funded pragmatic trials: moving on. Neuropsychopharmacology 35:2489–2490PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    CONVERGE consortium (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588–591PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D et al (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16:516–532PubMedCrossRefGoogle Scholar
  29. 29.
    Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645PubMedCrossRefGoogle Scholar
  30. 30.
    Glahn DC, Knowles EEM, McKay DR, Sprooten E, Raventós H, Blangero J et al (2014) Arguments for the sake of endophenotypes: examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 165B:122–130CrossRefGoogle Scholar
  31. 31.
    Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 29:1765–1781PubMedCrossRefGoogle Scholar
  32. 32.
    Goldstein BL, Klein DN (2014) A review of selected candidate endophenotypes for depression. Clin Psychol Rev 34:417–427PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lenzenweger MF (2013) Endophenotype, intermediate phenotype, biomarker: definitions, concept comparisons, clarifications. Depress Anxiety 30:185–189PubMedCrossRefGoogle Scholar
  34. 34.
    Gadad BS, Jha MK, Czysz A, Furman JL, Mayes TL, Emslie MP et al (2018) Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord 233:3–14PubMedCrossRefGoogle Scholar
  35. 35.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  36. 36.
    Strawbridge R, Young AH, Cleare AJ (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 13:1245–1262PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Macaluso M, Preskorn SH (2012) How biomarkers will change psychiatry: from clinical trials to practice. Part I: introduction. J Psychiatr Pract 18:118–121PubMedGoogle Scholar
  38. 38.
    Jentsch MC, Van Buel EM, Bosker FJ, Gladkevich AV, Klein HC, Oude Voshaar RC et al (2015) Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomark Med 9:277–297PubMedCrossRefGoogle Scholar
  39. 39.
    Lim MD, Dickherber A, Compton CC (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83:8–13PubMedCrossRefGoogle Scholar
  40. 40.
    Elliott P, Peakman TC (2008) The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol 37:234–244PubMedCrossRefGoogle Scholar
  41. 41.
    Su S-Y, Hogrefe-Phi CE, Asara JM, Turck CW, Golub MS (2016) Peripheral fibroblast metabolic pathway alterations in juvenile rhesus monkeys undergoing long-term fluoxetine administration. Eur Neuropsychopharmacol 26:1110–1118PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867PubMedCrossRefGoogle Scholar
  43. 43.
    Urbas L, Brne P, Gabor B, Barut M, Strlic M, Petric TC et al (2009) Depletion of high-abundance proteins from human plasma using a combination of an affinity and pseudo-affinity column. J Chromatogr A 1216:2689–2694PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson NL, Leigh Anderson N, Anderson NG (2003) The human plasma proteome: history, character, and diagnostic prospects: fig 3. Mol Cell Proteomics 2:50–50CrossRefGoogle Scholar
  45. 45.
    Putnam FW (2012) The plasma proteins: structure, function, and genetic control, 2nd edn. Elsevier, New York. ISBN:9780323138086Google Scholar
  46. 46.
    Jambunathan K, Galande AK (2014) Sample collection in clinical proteomics—proteolytic activity profile of serum and plasma. Proteomics Clin Appl 8:299–307PubMedCrossRefGoogle Scholar
  47. 47.
    Martins-de-Souza D, Harris LW, Guest PC, Turck CW, Bahn S (2010) The role of proteomics in depression research. Eur Arch Psychiatry Clin Neurosci 260:499–506PubMedCrossRefGoogle Scholar
  48. 48.
    Licznerski P, Duman RS (2013) Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 251:33–50PubMedCrossRefGoogle Scholar
  49. 49.
    Stelzhammer V, Haenisch F, Chan MK, Cooper JD, Steiner J, Steeb H et al (2014) Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int J Neuropsychopharmacol 17:1599–1608PubMedCrossRefGoogle Scholar
  50. 50.
    Lee MY, Kim EY, Kim SH, Cho K-C, Ha K, Kim KP et al (2016) Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 69:60–68PubMedCrossRefGoogle Scholar
  51. 51.
    Kim EY, Lee MY, Kim SH, Ha K, Kim KP, Ahn YM (2017) Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm. Prog Neuropsychopharmacol Biol Psychiatry 76:65–71PubMedCrossRefGoogle Scholar
  52. 52.
    Wang Q, Su X, Jiang X, Dong X, Fan Y, Zhang J et al (2016) iTRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience 330:291–325PubMedCrossRefGoogle Scholar
  53. 53.
    Haines RJ, Pendleton LC, Eichler DC (2011) Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol 2:8–23PubMedGoogle Scholar
  54. 54.
    Wu D, Peng Y, Zhou J, Yang Y-T, Rao C-L, Bai S-J et al (2015) Identification and validation of argininosuccinate synthase as a candidate urinary biomarker for major depressive disorder. Clin Chim Acta 451:142–148CrossRefGoogle Scholar
  55. 55.
    Grunze H (2011) The clinical side of bipolar disorders. Pharmacopsychiatry 44(Suppl 1):S43–S48.PubMedCrossRefGoogle Scholar
  56. 56.
    Preece RL, Han SYS, Bahn S (2018) Proteomic approaches to identify blood-based biomarkers for depression and bipolar disorders. Expert Rev Proteomics 15:325–340PubMedCrossRefGoogle Scholar
  57. 57.
    Stelzhammer V, Alsaif M, Chan MK, Rahmoune H, Steeb H, Guest PC et al (2015) Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res 60:40–48PubMedCrossRefGoogle Scholar
  58. 58.
    Fleming CE, Nunes AF, Sousa MM (2009) Transthyretin: more than meets the eye. Prog Neurobiol 89:266–276PubMedCrossRefGoogle Scholar
  59. 59.
    Frye MA, Nassan M, Jenkins GD, Kung S, Veldic M, Palmer BA et al (2015) Feasibility of investigating differential proteomic expression in depression: implications for biomarker development in mood disorders. Transl Psychiatry 5:e689. Scholar
  60. 60.
    Ren J, Zhao G, Sun X, Liu H, Jiang P, Chen J et al (2017) Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 86:17–24CrossRefGoogle Scholar
  61. 61.
    Yang Y, Chen J, Liu C, Fang L, Liu Z, Guo J et al (2016) The extrinsic coagulation pathway: a biomarker for suicidal behavior in major depressive disorder. Sci Rep 6:32882. Scholar
  62. 62.
    Aziz R, Steffens DC (2013) What are the causes of late-life depression? Psychiatr Clin North Am 36:497–516PubMedCrossRefGoogle Scholar
  63. 63.
    Diniz BS, Lin C-W, Sibille E, Tseng G, Lotrich F, Aizenstein HJ et al (2016) Circulating biosignatures of late-life depression (LLD): towards a comprehensive, data-driven approach to understanding LLD pathophysiology. J Psychiatr Res 82:1–7PubMedCrossRefGoogle Scholar
  64. 64.
    Diniz BS, Sibille E, Ding Y, Tseng G, Aizenstein HJ, Lotrich F et al (2015) Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Mol Psychiatry 20:594–601PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Diniz BS, Reynolds CF 3rd, Sibille E, Lin C-W, Tseng G, Lotrich F et al (2017) Enhanced molecular aging in late-life depression: the senescent-associated secretory phenotype. Am J Geriatr Psychiatry 25:64–72PubMedCrossRefGoogle Scholar
  66. 66.
    Bot M, Chan MK, Jansen R, Lamers F, Vogelzangs N, Steiner J et al (2015) Serum proteomic profiling of major depressive disorder. Transl Psychiatry 5:e599. Scholar
  67. 67.
    Lee J, Joo E-J, Lim H-J, Park J-M, Lee KY, Park A et al (2015) Proteomic analysis of serum from patients with major depressive disorder to compare their depressive and remission statuses. Psychiatry Investig 12:249–259PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martins-de-Souza D, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F et al (2014) Plasma fibrinogen: now also an antidepressant response marker? Transl Psychiatry 4:e352. Scholar
  69. 69.
    Gadad BS, Jha MK, Grannemann BD, Mayes TL, Trivedi MH (2017) Proteomics profiling reveals inflammatory biomarkers of antidepressant treatment response: findings from the CO-MED trial. J Psychiatr Res 94:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Turck CW, Guest PC, Maccarrone G, Ising M, Kloiber S, Lucae S et al (2017) Proteomic differences in blood plasma associated with antidepressant treatment response. Front Mol Neurosci 10:272. Scholar
  71. 71.
    Martins-de-Souza D, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F et al (2014) Blood mononuclear cell proteome suggests integrin and Ras signaling as critical pathways for antidepressant treatment response. Biol Psychiatry 76:e15–e17. Scholar
  72. 72.
    Park DI, Štambuk J, Razdorov G, Pučić-Baković M, Martins-de-Souza D, Lauc G et al (2018) Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci Rep 8:179. Scholar
  73. 73.
    Chen C, Hu Y, Dong X-Z, Zhou X-J, Mu L-H, Liu P (2018) Proteomic analysis of the antidepressant effects of Shen-Zhi-Ling in depressed patients: identification of proteins associated with platelet activation and lipid metabolism. Cell Mol Neurobiol 38:1123–1135PubMedCrossRefGoogle Scholar
  74. 74.
    Pisoni A, Strawbridge R, Hodsoll J, Powell TR, Breen G, Hatch S et al (2018) Growth factor proteins and treatment-resistant depression: a place on the path to precision. Front Psychiatry 9:386. Scholar
  75. 75.
    Ruland T, Chan MK, Stocki P, Grosse L, Rothermundt M, Cooper JD et al (2016) Molecular serum signature of treatment resistant depression. Psychopharmacology 233:3051–3059PubMedCrossRefGoogle Scholar
  76. 76.
    Stelzhammer V, Guest PC, Rothermundt M, Sondermann C, Michael N, Schwarz E et al (2013) Electroconvulsive therapy exerts mainly acute molecular changes in serum of major depressive disorder patients. Eur Neuropsychopharmacol 23:1199–1207PubMedCrossRefGoogle Scholar
  77. 77.
    Zhao H, Du H, Liu M, Gao S, Li N, Chao Y et al (2018) Integrative proteomics-metabolomics strategy for pathological mechanism of vascular depression mouse model. J Proteome Res 17:656–669PubMedCrossRefGoogle Scholar
  78. 78.
    Mallei A, Failler M, Corna S, Racagni G, Mathé AA, Popoli M (2014) Synaptoproteomic analysis of a rat gene-environment model of depression reveals involvement of energy metabolism and cellular remodeling pathways. Int J Neuropsychopharmacol 18. Scholar
  79. 79.
    Wesseling H, Rahmoune H, Tricklebank M, Guest PC, Bahn S (2014) A targeted multiplexed proteomic investigation identifies ketamine-induced changes in immune markers in rat serum and expression changes in protein kinases/phosphatases in rat brain. J Proteome Res 14:411–421PubMedCrossRefGoogle Scholar
  80. 80.
    Ge L, Zhu M-M, Yang J-Y, Wang F, Zhang R, Zhang J-H et al (2015) Differential proteomic analysis of the anti-depressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol Biochem Behav 131:77–86CrossRefGoogle Scholar
  81. 81.
    Palmfeldt J, Henningsen K, Eriksen SA, Müller HK, Wiborg O (2016) Protein biomarkers of susceptibility and resilience to stress in a rat model of depression. Mol Cell Neurosci 74:87–95PubMedCrossRefGoogle Scholar
  82. 82.
    Stelzhammer V, Ozcan S, Gottschalk MG, Steeb H, Hodes GE, Guest PC et al (2015) Central and peripheral changes underlying susceptibility and resistance to social defeat stress—a proteomic profiling study. Diagnostics in Neuropsychiatry 1:1–7. Scholar
  83. 83.
    Gottschalk MG, Wesseling H, Guest PC, Bahn S (2014) Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol 18.
  84. 84.
    Goodwin GM (2015) The overlap between anxiety, depression, and obsessive-compulsive disorder. Dialogues Clin Neurosci 17:249–260PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Licia C. Silva-Costa
    • 1
  • Pamela T. Carlson
    • 1
  • Paul C. Guest
    • 1
  • Valéria de Almeida
    • 1
  • Daniel Martins-de-Souza
    • 1
    • 2
    Email author
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue BiologyInstitute of Biology, University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São PauloBrazil

Personalised recommendations