Advertisement

Modeling 911 Emergency Events in Cuenca-Ecuador Using Geo-Spatial Data

  • Pablo Robles
  • Andrés Tello
  • Miguel Zúñiga-Prieto
  • Lizandro Solano-Quinde
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)

Abstract

We present several techniques for modeling emergency events using data from 911 emergency calls in the city of Cuenca-Ecuador. We apply three types of models. First, we use a probabilistic description of events using Gaussian kernels based on both, regular segmentation and mixture models, to represent the spatial distribution of occurrences. Second, we verify the qualitative relation of the clusters obtained with our kernel model with respect to the geo-political organization of the city. Finally, we develop an emergency model using a large dataset corresponding to the period January 1st 2015 through December 31st 2016 and test various data mining algorithms for prediction purposes. We verify the usefulness of our approach experimentally.

Keywords

911 calls Emergency calls Kernel models GMM 

Notes

Acknowledgements

This article is part of the project “Análisis predictivo de la ocurrencia de eventos de emergencia en la provincia del Azuay”, winner of the“XV Concurso Universitario de Proyectos de Investigación” funded by the Dirección de Investigación de la Universidad de Cuenca. The authors also thank the Servicio Integrado de Seguridad ECU911 - Zona 6 for their collaboration and data provided.

References

  1. 1.
    Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–33 (1990)Google Scholar
  2. 2.
    Bappee, F.K., Junior, A.S., Matwin, S.: Predicting crime using spatial features. CoRR abs/1803.04474 (2018). http://arxiv.org/abs/1803.04474
  3. 3.
    Cady, F.: The Data Science Handbook. Wiley, Hoboken (2017)CrossRefGoogle Scholar
  4. 4.
    Chandrasekar, A., Raj, A.S., Kumar, P.: Crime prediction and classification in San Francisco cityGoogle Scholar
  5. 5.
    Chirigati, F., Doraiswamy, H., Damoulas, T., Freire, J.: Data polygamy: the many-many relationships among urban spatio-temporal data sets. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD 2016, pp. 1011–1025. ACM, New York (2016).  https://doi.org/10.1145/2882903.2915245
  6. 6.
    Chohlas-Wood, A., Merali, A., Reed, W.R., Damoulas, T.: Mining 911 calls in New York city: temporal patterns, detection, and forecasting. In: AAAI Workshop: AI for Cities (2015)Google Scholar
  7. 7.
    Cramer, D., Brown, A.A., Hu, G.: Predicting 911 calls using spatial analysis. In: Lee, R. (ed.) Software Engineering Research, Management and Applications 2011, pp. 15–26. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-23202-2_2CrossRefGoogle Scholar
  8. 8.
    Kim, S.Y., Maciejewski, R., Malik, A., Jang, Y., Ebert, D.S., Isenberg, T.: Bristle maps: a multivariate abstraction technique for geovisualization. IEEE Trans. Vis. Comput. Graph. 19(9), 1438–1454 (2013).  https://doi.org/10.1109/TVCG.2013.66CrossRefGoogle Scholar
  9. 9.
    Malik, A., Maciejewski, R., Collins, T.F., Ebert, D.S.: Visual analytics law enforcement toolkit. In: 2010 IEEE International Conference on Technologies for Homeland Security (HST), pp. 222–228 (2010)Google Scholar
  10. 10.
    Malik, A., Maciejewski, R., Elmqvist, N., Jang, Y., Ebert, D.S., Huang, W.: A correlativeanalysis process in a visual analytics environment. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 33-42 (2012)Google Scholar
  11. 11.
    Malik, A., Maciejewski, R., Maule, B., Ebert, D.S.: A visual analytics process for maritime resource allocation and risk assessment. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 221–230 (2011)Google Scholar
  12. 12.
    Malik, A., Maciejewski, R., Towers, S., McCullough, S., Ebert, D.: Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement. IEEE Trans. Vis. Comput. Graph. 20, 1863–1872 (2014)CrossRefGoogle Scholar
  13. 13.
    Razip, A.M., et al.: A mobile visual analytics approach for law enforcement situation awareness. In: 2014 IEEE Pacific Visualization Symposium, pp. 169–176 (2014)Google Scholar
  14. 14.
    Thomas, R.W., Vidal, J.M.: Toward detecting accidents with already available passive traffic information. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–4, January 2017.  https://doi.org/10.1109/CCWC.2017.7868428
  15. 15.
    Towers, S., Chen, S., Malik, A., Ebert, D.: Factors influencing temporal patterns in crime in a large American city; a predictive analytics perspective. SSRN (2016)Google Scholar
  16. 16.
    Yuan, Z., Zhou, X., Yang, T., Tamerius, J., Mantilla, R.: Predicting traffic accidents through heterogeneous urban data: a case study. In: UrbComp-2017 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Robles
    • 1
  • Andrés Tello
    • 1
  • Miguel Zúñiga-Prieto
    • 1
  • Lizandro Solano-Quinde
    • 1
  1. 1.Universidad de CuencaCuencaEcuador

Personalised recommendations