Advertisement

Mobile Biometric Authentication by Face Recognition for Attendance Management Software

  • Cristian Zambrano-Vega
  • Byron Oviedo
  • Jorge Chiquito Mindiola
  • Jacob Reyes Baque
  • Oscar Moncayo Carreño
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)

Abstract

In this paper we present bioFACE, a novel mobile application for the biometric authentication by face recognition of the users of the attendance management software provided by the Human Resources department of the State Technical University of Quevedo. This application converts the smartphones in a biometric device that allows register the workday entries and workday exits from any place inside of the university campus. The user-location is validated by the GPS coordinates using the Android Geofence API and the biometric authentication of the users (employees and professors) is carried out by face recognition performed by Microsoft Face API features.

Keywords

Mobile biometric authentication Face recognition Mobile smart applications 

References

  1. 1.
    Android Geofences (2018). https://developer.android.com/training/location/geofencing. Accessed 20 May 2018
  2. 2.
  3. 3.
    Microsoft-Face-API (2018). https://docs.microsoft.com/en-us/azure/cognitive-services/face/overview. Accessed 20 May 2018
  4. 4.
    Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: a general-purpose face recognition library with mobile applications. CMU School of Computer Science (2016)Google Scholar
  5. 5.
    Hadid, A., Heikkila, J., Silvén, O., Pietikainen, M.: Face and eye detection for person authentication in mobile phones. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007, pp. 101–108. IEEE (2007)Google Scholar
  6. 6.
    Jebara, T.S.: 3D pose estimation and normalization for face recognition. Centre for Intelligent Machines. McGill University (1995)Google Scholar
  7. 7.
    Kanade, T.: Picture Processing System by Computer Complex and Recognition of Human Faces (1974)Google Scholar
  8. 8.
    Liu, H., Xie, X., Ma, W.Y., Zhang, H.J.: Automatic browsing of large pictures on mobile devices. In: Multimedia 2003, pp. 148–155. ACM, New York (2003).  https://doi.org/10.1145/957013.957045
  9. 9.
    Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)Google Scholar
  10. 10.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification, pp. 1701–1708 (2014)Google Scholar
  11. 11.
    Trewin, S., Swart, C., Koved, L., Martino, J., Singh, K., Ben-David, S.: Biometric authentication on a mobile device: a study of user effort, error and task disruption, ACSAC 2012, pp. 159–168. ACM, New York (2012).  https://doi.org/10.1145/2420950.2420976
  12. 12.
    Veridium: Biometrics Definitions (2018). https://www.veridiumid.com/biometrics/. Accessed 20 May 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias de la IngenieríaUniversidad Técnica Estatal de QuevedoQuevedoEcuador
  2. 2.Facultad de Ciencias EmpresarialesUniversidad Técnica Estatal de QuevedoQuevedoEcuador

Personalised recommendations