Advertisement

Fault-Tolerant Model Based on Fuzzy Control for Mobile Devices

  • Diego Vallejo-Huanga
  • Julio Proaño
  • Paulina Morillo
  • Holger Ortega
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)

Abstract

Nowadays, mobile devices incorporate many sensors to monitor operational parameters, so that possible failures in the systems can be detected and prevented. Therefore, failure detection has become crucial to ensure the automation of certain applications, such as, health monitoring or unmanned aerial vehicles. On the other side, fuzzy models perfectly fit when the input-output relationships use categorical values and they are not deterministic. However, find a feasible model is not a trivial task due to the interaction of many variables at time. In this work, we propose a fault detection model based on fuzzy logic to early detect potential fault in mobile devices. Our approach considers the interaction of four variables, all of them could be measured from sensors of the device. As a proof of concept, we have tested our model in a simulated scenario with random values taken from all the possible combinations of the input fuzzy sets. The mapping into the fuzzy output called, risk of fault, shows accordance with the expected values in literature. Finally, results show that our model can distinguish four levels of failure risk and it is able to be implemented in a production environment.

Keywords

Fuzzy logic Fault tolerance Mobile devices 

Notes

Acknowledgments

This work was supported by IDEIAGEOCA Research Group of Universidad Politécnica Salesiana in Quito, Ecuador.

References

  1. 1.
    Abdallah, M., Elkeelany, O.: A survey on data acquisition systems DAQ. In: International Conference on Computing, Engineering and Information, ICC 2009, pp. 240–243 (2009)Google Scholar
  2. 2.
    Aghaee, N., Peng, Z., Eles, P.: Adaptive temperature-aware SoC test scheduling considering process variation. In: IEEE 14th Euromicro Conference on Digital System Design (DSD), pp. 197–204 (2011)Google Scholar
  3. 3.
    Ajiboye, A.B., Weir, R.F.: A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 280–291 (2005)CrossRefGoogle Scholar
  4. 4.
    Akmal, M.A., Jamin, N.F., Ghani, N.A.: Fuzzy logic controller for two wheeled EV3 LEGO robot. In: 2017 IEEE Conference on Systems, Process and Control (ICSPC) (2017)Google Scholar
  5. 5.
    Arabnejad, H., Pahl, C., Estrada, G., Samir, A., Fowley, F.: A fuzzy load balancer for adaptive fault tolerance management in cloud platforms. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 109–124. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67262-5_9CrossRefGoogle Scholar
  6. 6.
    Blanke, M., et al.: Fault-tolerant control systems - a holistic view. Control Eng. Pract. 5(5), 693–702 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bojadziev, G.: Fuzzy Logic for Business, Finance, and Management. World Scientific, Singapore (2007)CrossRefGoogle Scholar
  8. 8.
    Buennemeyer, T.K., Nelson, T.M., Clagett, L.M., Dunning, J.P., Marchany, R.C., Tront, J.G.: Mobile device profiling and intrusion detection using smart batteries. In: Proceedings in the 41th Hawaii International Conference on System Sciences (2008)Google Scholar
  9. 9.
    Cheraghlou, M.N., Khadem-Zadeh, A., Haghparast, M.: A survey of fault tolerance architecture in cloud computing. J. Netw. Comput. Appl. 61, 81–92 (2016)CrossRefGoogle Scholar
  10. 10.
    Corey, G.P.: Nine ways to murder your battery (these are only some of the ways). In: Battcon (2010)Google Scholar
  11. 11.
    Diao, Y., Passino, K.M.: Stable fault-tolerant adaptive fuzzy/neural control for a turbine engine. IEEE Trans. Control Syst. Technol. 9(3), 494–509 (2001)CrossRefGoogle Scholar
  12. 12.
    Dorf, R.C., Bishop, R.H.: Modern Control Systems. Pearson Education, London (2011)zbMATHGoogle Scholar
  13. 13.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  14. 14.
    Ferreira, D., Dey, A.K., Kostakos, V.: Understanding human-smartphone concerns: a study of battery life. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 19–33. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21726-5_2CrossRefGoogle Scholar
  15. 15.
    Gao, L., Liu, S., Dougal, R.A.: Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol. 25(3), 495–505 (2002)CrossRefGoogle Scholar
  16. 16.
    Gaurav, A.K., Kaur, A.: Comparison between conventional PID and fuzzy logic controller for liquid flow control: performance evaluation of fuzzy logic and PID controller by using MATLAB/Simulink. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 1(1), 84–88 (2012)Google Scholar
  17. 17.
    Gdaim, S., Mtibaa, A., Mimouni, M.F.: Design and experimental implementation of DTC of an induction machine based on fuzzy logic control on FPGA. IEEE Trans. Fuzzy Syst. 23(3), 644–655 (2015)CrossRefGoogle Scholar
  18. 18.
    Hamad, H., Saad, R., Abed, R.: Performance evaluation of RESTful web services for mobile devices. Int. Arab J. e-Technol. 1(3), 72–78 (2010)Google Scholar
  19. 19.
    Jiang, B., et al.: Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010)CrossRefGoogle Scholar
  20. 20.
    Johnson, B.W.: Fault-tolerant microprocessor-based systems. IEEE Micro 4(6), 6–21 (1984)CrossRefGoogle Scholar
  21. 21.
    Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J. 29(5), 390–395 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Korpipää, P., Mäntyjärvi, J.: An ontology for mobile device sensor-based context awareness. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS (LNAI), vol. 2680, pp. 451–458. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-44958-2_37CrossRefGoogle Scholar
  23. 23.
    Koshiyama, A.S., Vellasco, M.M.B.R., Tanschei, R.: GPFIS-control: a genetic fuzzy system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)CrossRefGoogle Scholar
  24. 24.
    Kwong, W.A., et al.: Expert supervision of fuzzy learning systems for fault tolerant aircraft control. Proc. IEEE 83(3), 466–483 (1995)CrossRefGoogle Scholar
  25. 25.
    Lee, J., Chon, Y., Cha, H.: Evaluating battery aging on mobile devices. In: Proceedings of the 52nd Annual Design Automation Conference, p. 135. ACM (2015)Google Scholar
  26. 26.
    Li, Y., Ma, Z., Tong, S.: Adaptive fuzzy fault-tolerant control of non-triangular structure nonlinear systems with error-constraint. IEEE Trans. Fuzzy Syst. 26, 2062–2074 (2017)CrossRefGoogle Scholar
  27. 27.
    Maeda, M., Murakami, S.: A self-tuning fuzzy controller. Fuzzy Sets Syst. 51(1), 29–40 (1992)CrossRefGoogle Scholar
  28. 28.
    Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilisation in medicine. Artif. Intell. Med. 21(1–3), 27–42 (2001)CrossRefGoogle Scholar
  29. 29.
    Pena, M., et al.: Fuzzy logic for omni directional mobile platform control displacement using FPGA and Bluetooth. IEEE Latin Am. Trans. 13(6), 1907–1914 (2015)CrossRefGoogle Scholar
  30. 30.
    Petricca, M., Shin, D., Bocca, A., Macii, A., Macii, E., Poncino, M.: An automated framework for generating variable-accuracy battery models from datasheet information. In: 2013 IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 365–370 (2013)Google Scholar
  31. 31.
    Saha, G.K.: Fault management in mobile computing. Ubiquity 2003(October), 1 (2003)CrossRefGoogle Scholar
  32. 32.
    Sahin, O., Coskun, A.K.: On the impacts of greedy thermal management in mobile devices. IEEE Embed. Syst. Lett. 7(2), 55–58 (2015)CrossRefGoogle Scholar
  33. 33.
    Sala, A., Guerra, T.M., Babuska, R.: Perspectives of fuzzy systems and control. Fuzzy Sets Syst. 156, 432–444 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sa-ngawong, N., Ngamroo, I.: Intelligent photovoltaic farms for robust frequency stabilization in multi-area interconnected power system based on PSO-based optimal Sugeno fuzzy logic control. Renew. Energy 74, 555–567 (2015)CrossRefGoogle Scholar
  35. 35.
    Satyanarayanan, M., et al.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)CrossRefGoogle Scholar
  36. 36.
    Siewiorek, D.P., Swarz, R.S.: The Theory and Practice of Reliable System Design. Digital Press, Belford (1982)zbMATHGoogle Scholar
  37. 37.
    Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7 (1993)CrossRefGoogle Scholar
  38. 38.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. Read. Fuzzy Sets Intell. Syst. SMC–15(1), 387–403 (1993)CrossRefGoogle Scholar
  39. 39.
    Tong, S., Huo, B., Li, Y.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)CrossRefGoogle Scholar
  40. 40.
    Xie, Q., et al.: Dynamic thermal management in mobile devices considering the thermal coupling between battery and application processor. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 242–247 (2013)Google Scholar
  41. 41.
    Yeo, I., Kim, E.J.: Temperature-aware scheduler based on thermal behavior grouping in multicore systems. In: Design, Automation and Test in Europe Conference and Exhibition, DATE 2009, pp. 946–951. IEEE (2009)Google Scholar
  42. 42.
    Yeo, I., Liu, C.C., Kim, E.J.: Predictive dynamic thermal management for multicore systems. In: Proceedings of the 45th Annual Design Automation Conference, pp. 734–739. ACM (2008)Google Scholar
  43. 43.
    Zadeh, L.A.: Fuzzy Sets. Fuzzy Logic, And Fuzzy Systems: Selected Papers, pp. 394–432. World Scientific, Singapore (1996)Google Scholar
  44. 44.
    Zhang, K., Jiang, B., Staroswiecki, M.: Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18(1), 194–201 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego Vallejo-Huanga
    • 1
    • 2
    • 3
  • Julio Proaño
    • 1
  • Paulina Morillo
    • 1
  • Holger Ortega
    • 1
  1. 1.IDEIAGEOCA Research GroupUniversidad Politécnica SalesianaQuitoEcuador
  2. 2.Department of MathematicsUniversidad San Francisco de QuitoQuitoEcuador
  3. 3.Department of Physics and MathematicsUniversidad de las AméricasQuitoEcuador

Personalised recommendations