Advertisement

Geographical Information System Based on Artificial Intelligence Techniques

  • Nayi Sánchez Fleitas
  • Raúl Comas Rodríguez
  • María Matilde García Lorenzo
  • Frankz Carrera
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)

Abstract

The Electrical Union in Cuba develops the Business Management System of the Electrical Union (SIGE) that focuses on the automation of electrical processes. The geographic information systems (SIGOBE) developed don’t meet the specific requirements for their generalization due to their limited updating facilities and the small spectrum they cover. The general objective of the research is: to develop the geographic information system of the transmission and distribution processes in the Electric Union, with the use of artificial intelligence techniques, on a deep conceptual scheme of the domain, that responds to the requests of consultation of users as support for decision making. A case-based system on type problem solved was designed, using as an initial case database, the 265 static queries registered in SIGERE. The queries are described by eight data-type predictive traits and three objective traits. The similarity between two cases was determined by the weighted sum of the distance of their traits and the calculation of the distance between traits was done according to its nature. An intelligent real-time queries system was implemented for the SIGOBE, achieving the generation of automatic queries that allow the system to respond to any type of queries in real-time. The experimental study shows the feasibility of the proposal.

Keywords

Geographical information system Artificial intelligence Case-based system 

References

  1. 1.
    Mónica Andrea Arango, A., Santiago Arroyave, O.: Análisis de combustibles fósiles en el mercado de generación de energía eléctrica en Colombia: un contraste entre modelos de volatilidad. Revista de Métodos Cuantitativos para la Economía y la Empresa (22), 190–215 (2016)Google Scholar
  2. 2.
    Castillo, Y., Castrillón Gutiérrez, M., Vanegas Chamorro, M., Valencia, G., Villicaña, E.: Rol de las Fuentes No Convencionales de Energía en el sector eléctrico colombiano. Prospectiva 13(1), 39–51 (2015)CrossRefGoogle Scholar
  3. 3.
    Garcia, M.L.: Modelos de predicción de demanda eléctrica utilizando técnicas de inteligencia artificial. Aplicación al mercado eléctrico español. Universidad Miguel Hernández de Elche (2016)Google Scholar
  4. 4.
    Fernández Álvarez, R.: Informatización de la Gestión de las Redes Eléctricas, Tesis Doctoral, Facultad de Ingeniería Eléctrica. Universidad Central “Marta Abreu” de Las Villas, Santa Clara (2011)Google Scholar
  5. 5.
    Gondres Torné, I., Rodríguez León, N., Lajes Choy, S.E., del Castillo Serpa, A.: El aprendizaje bajo incertidumbre aplicado al mantenimiento de interruptores de potencia. Ingeniería Energética XXXV(2), 149–158 (2014)Google Scholar
  6. 6.
    Martínez, M., Santana, E., Beliz, N.: Análisis de los paradigmas de inteligencia artificial, para un modelo inteligente de gestión de la energía eléctrica. Revista de Iniciación Científica 3(1), 77–84 (2017)Google Scholar
  7. 7.
    Rueda Calier, F., Rodríguez Suárez, A., Castellanos Granados, H.C.: Desarrollo y tendencias de la inteligencia artificial. Revista Matices Tecnológicos, 4 (2013)Google Scholar
  8. 8.
    Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  9. 9.
    Guerrero, O.E.G., Osorio, J.J.R., Gauta, T.L.A.: Implementación de una estrategia de control difuso para aumentar la producción de crudo en pozo petrolero. Revista Colombiana de Tecnologías de Avanzada (RCTA) 1(27), 98–103 (2017)Google Scholar
  10. 10.
    Rey, H.C., Ricaurte, J.A.B., Pérez, A.G.: Sistema experto para la selección de personal desarrollador de software. Ingenio Magno 4(1), 75–81 (2014)Google Scholar
  11. 11.
    Zhang, Y., Luo, X., Zhang, H., Sutherland, J.W.: A knowledge representation for unit manufacturing processes. Int. J. Adv. Manuf. Technol. 73(5–8), 1011–1031 (2014)CrossRefGoogle Scholar
  12. 12.
    Marling, C., Shubrook, J., Schwartz, F.: Case-based decision support for patients with type 1 diabetes on insulin pump therapy. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 325–339. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85502-6_22CrossRefGoogle Scholar
  13. 13.
    Amin, H.H., Deabes, W., Bouazza, K.: Clustering of user activities based on adaptive threshold spiking neural networks. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 1–6. IEEE, Milan (2017)Google Scholar
  14. 14.
    Platon, R., Dehkordi, V.R., Martel, J.: Hourly prediction of a building’s electricity consumption using case-based reasoning, artificial neural networks and principal component analysis. Energy Build. 92, 10–18 (2015)CrossRefGoogle Scholar
  15. 15.
    Cocea, M., Magoulas, G.: Design and evaluation of a case-based system for modelling exploratory learning behaviour of math generalisation. IEEE Trans. Learn. Technol. 14(8), 1–14 (2017)Google Scholar
  16. 16.
    Garcia Lorenzo, M.M., Bello Pérez, R.E.: A model and its different applications to case-based reasoning. Knowl.-Based Syst. 9(7), 465–473 (1996)CrossRefGoogle Scholar
  17. 17.
    González Benítez, N.: Sistema Experto basado en casos para el diagnóstico de la Fasciola hepática en el ganado bovino. REDVET. Revista Electrónica de Veterinaria 17(12), 1–11 (2016)Google Scholar
  18. 18.
    Gutiérrez Martínez, I., Bello Pérez, R.E.: Making decision in case-based systems using probabilities and rough sets. Knowl.-Based Syst. 16(4), 205–213 (2003)CrossRefGoogle Scholar
  19. 19.
    Gillespie, K., Gupta, K.M., Drinkwater, M.: Case-based object placement planning. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 170–184. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11209-1_13CrossRefGoogle Scholar
  20. 20.
    Leung, K., Choy, K., Tam, M., Lam, C., Lee, C., Cheng, S.W.: A hybrid RFID case-based system for handling air cargo storage location assignment operations in distribution centers. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 1859–1868. IEEE, Portland (2017)Google Scholar
  21. 21.
    de la Rosa Turbides, T.E.: Razonamiento basado en casos aplicado a la planificación heurística. Tesis Doctoral, Departamento de Informática, Universidad Carlos III, Madrid, España (2010)Google Scholar
  22. 22.
    Moreno Laverde, R., Joyanes Aguilar, L., Giraldo Marín, L.M., Duque Méndez, N.D., Tabares Morales, V.: Modelo para personalización de actividades educativas aprovechando la técnica de Razonamiento basado en Casos (RbC). Campus Virtuales 4(1), 118–127 (2015)Google Scholar
  23. 23.
    Chazara, P., Negny, S., Montastruc, L.: Flexible knowledge representation and new similarity measure: application on case based reasoning for waste treatment. Expert Syst. Appl. 58, 143–154 (2016)CrossRefGoogle Scholar
  24. 24.
    Fitzgerald, T., McGreggor, K., Akgun, B., Thomaz, A., Goel, A.: Visual case retrieval for interpreting skill demonstrations. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 119–133. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24586-7_9CrossRefGoogle Scholar
  25. 25.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)Google Scholar
  26. 26.
    Cordero Morales, D., Ruiz Constanten, Y., Torres Rubio, Y.: Sistema de Razonamiento Basado en Casos para la identificación de riesgos de software. Revista Cubana de Ciencias Informáticas 7(2), 222–239 (2013)Google Scholar
  27. 27.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo (1993)CrossRefGoogle Scholar
  28. 28.
    Myrgioti, E., Bassiliades, N., Miliou, A.: Bridging the HASM: an OWL ontology for modeling the information pathways in haptic interfaces software. Expert Syst. Appl. 40(4), 1358–1371 (2013)CrossRefGoogle Scholar
  29. 29.
    Valaski, J., Malucelli, A., Reinehr, S.: Ontologies application in organizational learning: a literature review. Expert Syst. Appl. 39(8), 7555–7561 (2012)CrossRefGoogle Scholar
  30. 30.
    Wimmer, H., Rada, R.: Good versus bad knowledge: ontology guided evolutionary algorithms. Expert Syst. Appl. 42(21), 8039–8051 (2015)CrossRefGoogle Scholar
  31. 31.
    Akmal, S., Shih, L.-H., Batres, R.: Ontology-based similarity for product information retrieval. Comput. Ind. 65(1), 91–107 (2014)CrossRefGoogle Scholar
  32. 32.
    Bouhana, A., Zidi, A., Fekih, A., Chabchoub, H., Abed, M.: An ontology-based CBR approach for personalized itinerary search systems for sustainable urban freight transport. Expert Syst. Appl. 42(7), 3724–3741 (2015)CrossRefGoogle Scholar
  33. 33.
    Sánchez Fleitas, N., Comas Rodríguez, R., García Lorenzo, M.M., Riverol Quesada, A.: Modelo de manejo de datos, con el uso de inteligencia artificial, para un sistema de información geográfica en el sector energético. Enfoque UTE 7(3), 95–109 (2016)CrossRefGoogle Scholar
  34. 34.
    Montoya Quintero, D.M.: Modelo para la extracción de conocimiento de un experto humano en un sistema basado en conocimientos usando razonamiento basado en casos. Tesis Doctoral, Facultad de Minas, Departamento de Ciencias de la Computación y de la decisión, Universidad Nacional de Colombia, Medellin, Colombia (2015)Google Scholar
  35. 35.
    Comas Rodríguez, R.: Integración de herramientas de control de gestión para el alineamiento estratégico en el sistema empresarial cubano. Aplicación en empresas de Sancti Spiritus. Doctor en Ciencias Técnicas, Departamento de Ingeniería Industrial, Universidad De Matanzas “Camilo Cienfuegos” (2013)Google Scholar
  36. 36.
    Althoff, K.-D., Auriol, E., Barletta, R., Manago, M.: Review of Industrial Case-Based Reasoning Tools. A1 Intelligence, Oxford, USA (1995)Google Scholar
  37. 37.
    González Castellanos, M.: Extensión de algoritmos representativos del aprendizaje automático al trabajo con datos tipo conjunto. Tesis de Maestría, Departamento de Ciencias de la Computación, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Villa Clara, Cuba (2010)Google Scholar
  38. 38.
    Winkler, W.E.: Using the EM Algorithm for Weight Computation in the Fellegi-Sunter Model of Record Linkage. Bureau of the Census Statistical Resarch Division, Washington D.C., USA (2000)Google Scholar
  39. 39.
    Skjermo, J., Dah, E., Opland, R., Aamodt, A., Kofod-Petersen, A., Gustavsson, E., et al.: Case-based reasoning for alpine road operation support. In: 23rd ITS World Congress, Paper number EU-TP0079, Melbourne, Australia (2016)Google Scholar
  40. 40.
    Navarro Ferrer, D.G., Delgado, T., Martín, G., Jaimez, E.: An approach of a data-driven spatial decision support system to manage the effects of climate change on agriculture. In: 28th EnviroInfo 2014 Conference, BIS-Verlag, Oldenburg, Germany (2014)Google Scholar
  41. 41.
    González, C.A.S., Araque, D.P.: ¿ Entendemos realmente los conceptos entorno a la productividad?. Revista San Gregorio (17), 90–95 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Universidad Regional Autónoma de los AndesAmbatoEcuador

Personalised recommendations