Advertisement

On Helping and Stacks

  • Vitaly AksenovEmail author
  • Petr Kuznetsov
  • Anatoly Shalyto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11028)

Abstract

A concurrent algorithm exhibits helping when one process performs work on behalf of other processes. More formally, helping is observed when the order of some operation in a linearization is fixed by a step of another process. In this paper, we show that no wait-free linearizable implementation of a stack using read, write, compare&swap and fetch&add operations can be help-free, correcting a mistake in an earlier proof by Censor-Hillel et al.

References

  1. 1.
    Afek, Y., Gafni, E., Morrison, A.: Common2 extended to stacks and unbounded concurrency. Distrib. Comput. 20(4), 239–252 (2007)CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of synchronization objects. In: PODC, pp. 159–170 (1993)Google Scholar
  3. 3.
    Arbel-Raviv, M., Brown, T.: Reuse, don’t recycle: transforming lock-free algorithms that throw away descriptors. In: DISC, vol. 91, pp. 4:1–4:16 (2017)Google Scholar
  4. 4.
    Attiya, H., Castañeda, A., Hendler, D.: Nontrivial and universal helping for wait-free queues and stacks. In: OPODIS, vol. 46 (2016)Google Scholar
  5. 5.
    Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: PODC, pp. 241–250 (2015)Google Scholar
  6. 6.
    Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: SPAA, pp. 325–334. ACM (2011)Google Scholar
  7. 7.
    Feldman, S., Laborde, P., Dechev, D.: A wait-free multi-word compare-and-swap operation. IJPP 43(4), 572–596 (2015)Google Scholar
  8. 8.
    Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 123–149 (1991)CrossRefGoogle Scholar
  9. 9.
    Howley, S.V., Jones, J.: A non-blocking internal binary search tree. In: SPAA, pp. 161–171. ACM (2012)Google Scholar
  10. 10.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  11. 11.
    Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In: SPAA, pp. 73–82. ACM (2002)Google Scholar
  12. 12.
    Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: ACM SIGPLAN Notices, vol. 49, pp. 317–328. ACM (2014)Google Scholar
  13. 13.
    Peng, Y., Hao, Z.: FA-Stack: a fast array-based stack with wait-free progress guarantee. IEEE Trans. Parallel Distrib. Syst. (4), 843–857 (2018)Google Scholar
  14. 14.
    Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 330–344. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35476-2_23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vitaly Aksenov
    • 1
    • 2
    Email author
  • Petr Kuznetsov
    • 3
  • Anatoly Shalyto
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussia
  2. 2.Inria ParisParisFrance
  3. 3.LTCI, Télécom ParisTechUniversité Paris-SaclayParisFrance

Personalised recommendations