Advertisement

Complete Visibility for Oblivious Robots in \(\mathcal{O}(N)\) Time

  • Gokarna SharmaEmail author
  • Costas Busch
  • Supratik Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11028)

Abstract

We consider the distributed setting of N autonomous mobile robots that operate in Look-Compute-Move cycles following the classic oblivious robots model. We study the fundamental problem where starting from an arbitrary initial configuration, N autonomous robots reposition themselves to a convex hull formation on the plane where each robot is visible to all others (the Complete Visibility problem). We assume obstructed visibility, where a robot cannot see another robot if a third robot is positioned between them on the straight line connecting them. We provide the first \(\mathcal{O}(N)\) time algorithm for this problem in the fully synchronous setting. Our contribution is a significant improvement over the runtime of the only previously known algorithm for this problem which has a lower bound of \(\varOmega (N^2)\) in the fully synchronous setting. The proposed algorithm is collision-free – robots do not share positions and their paths do not cross.

References

  1. 1.
    Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual visibility problem for oblivious robots. In: CCCG (2014)Google Scholar
  2. 2.
    Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)Google Scholar
  3. 3.
    Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: ISIC, pp. 453–460, August 1995Google Scholar
  4. 4.
    Choset, H., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  5. 5.
    Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27796-5_8CrossRefGoogle Scholar
  6. 6.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399(1–2), 71–82 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., et al. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18381-2_15CrossRefGoogle Scholar
  8. 8.
    Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22012-8_52CrossRefGoogle Scholar
  9. 9.
    Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)Google Scholar
  10. 10.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: SPAA, pp. 139–148 (2011)Google Scholar
  12. 12.
    Degener, B., Kempkes, B., Meyer auf der Heide, F.: A local o(n\({}^{\text{2}}\)) gathering algorithm. In: SPAA, pp. 217–223 (2010)Google Scholar
  13. 13.
    Di Luna, G.A., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)CrossRefGoogle Scholar
  15. 15.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Feasibility of polynomial-time randomized gathering for oblivious mobile robots. IEEE Trans. Parallel Distrib. Syst. 24(4), 716–723 (2013)CrossRefGoogle Scholar
  16. 16.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new directions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005).  https://doi.org/10.1007/11603771_1CrossRefGoogle Scholar
  18. 18.
    Sharma, G., Alsaedi, R., Busch, C., Mukhopadhyay, S.: The complete visibility problem for fat robots with lights. In: ICDCN, pp. 21:1–21:4 (2018)Google Scholar
  19. 19.
    Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algorithms. In: CCCG, pp. 268–274 (2015)Google Scholar
  20. 20.
    Sharma, Gokarna, Busch, Costas, Mukhopadhyay, Supratik: Mutual visibility with an optimal number of colors. In: Bose, Prosenjit, Gasieniec, L., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28472-9_15CrossRefGoogle Scholar
  21. 21.
    Sharma, G., Busch, C., Mukhopadhyay, S.: Brief announcement: complete visibility for oblivious robots in linear time. In: SPAA, pp. 325–327 (2017)Google Scholar
  22. 22.
    Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69084-1_18CrossRefGoogle Scholar
  23. 23.
    Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_26CrossRefGoogle Scholar
  24. 24.
    Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Logarithmic-time complete visibility for asynchronous robots with lights. In: IPDPS, pp. 513–522 (2017)Google Scholar
  25. 25.
    Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time complete visibility for robots with lights. In: IPDPS.,pp. 375–384 (2015)Google Scholar
  26. 26.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gokarna Sharma
    • 1
    Email author
  • Costas Busch
    • 2
  • Supratik Mukhopadhyay
    • 2
  1. 1.Department of Computer ScienceKent State UniversityKentUSA
  2. 2.School of Electrical Engineering and Computer ScienceLouisiana State UniversityBaton RougeUSA

Personalised recommendations