Advertisement

Comparative Analysis of Our Association Rules Based Approach and a Genetic Approach for OLAP Partitioning

  • Khadija LetracheEmail author
  • Omar El Beggar
  • Mohammed Ramdani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11028)

Abstract

OLAP databases remain the first choice of enterprises to store and analyze huge amount of data. Thereby, to further enhance query performances and minimize the maintenance cost, many techniques exist, among which data partitioning is considered as an efficient technique to achieve this purpose. Although most of business intelligence tools support this feature, defining an appropriate partitioning strategy remains a big challenge. Hence, many approaches have been proposed in the literature. Nevertheless, most of them have been evaluated only in relational model. Therefore, we propose in this paper, a comparative study between our partitioning approach based on the association rules algorithm and a genetic based one. The study aims to compare the results of the aforementioned approaches in case of OLAP partitioning.

Keywords

Partitioning OLAP Data warehouse Association rules algorithm Genetic algorithm Performance 

References

  1. 1.
    Inmon, W.H.: Building the Data Warehouse. Wiley, Hoboken (2005)Google Scholar
  2. 2.
    Ponniah, P.: Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals. Wiley, Hobokens (2001)CrossRefGoogle Scholar
  3. 3.
    Letrache, K., El Beggar, O., Ramdani, M.: The automatic creation of OLAP cube using an MDA approach. Softw.: Pract. Exp., 117 (2017).  https://doi.org/10.1002/spe.2512
  4. 4.
    Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning selection in a data warehouse. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005).  https://doi.org/10.1007/11546849_12CrossRefGoogle Scholar
  5. 5.
    Bellatreche, L., Boukhalfa, K., Richard, P.: Referential horizontal partitioning selection problem in data warehouses: hardness study and selection algorithms. Int. J. Data Warehous. Min. 5(4), 1–23 (2009)CrossRefGoogle Scholar
  6. 6.
    Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data warehouses: hardness study, heuristics and ORACLE validation. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 87–96. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85836-2_9CrossRefGoogle Scholar
  7. 7.
    Amirat, H., Boukhalfa, K.: A data mining-based approach for data warehouse optimisation. In: ICA2IT International Conference on Artificial Intelligence and Information Technology (2014)Google Scholar
  8. 8.
    Bouchakri, R., Bellatreche, L., Faget, Z., Bre, S.: A coding template for handling static and incremental horizontal partitioning in data warehouses. J. Decis. Syst. 23(4), 481–498 (2014)CrossRefGoogle Scholar
  9. 9.
    Toumi, L., Moussaoui, A., Ugur, A.: EMeD-part: an efficient methodology for horizontal partitioning in data warehouses. In: ACM IPAC 2015, Batna, Algeria (2015)Google Scholar
  10. 10.
    Sun, L., Krishnan, S., Xin, R.S., Franklin, M.J.: A Partitioning Framework for Aggressive Data Skipping. In: International Conference on Very Large Data Bases, Hangzhou, China (2014)Google Scholar
  11. 11.
    Arres, B., Kabachi, N., Boussaid, O.: A data pre-partitioning and distribution optimization approach for distributed datawarehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Athens, pp. 454–461 (2015)Google Scholar
  12. 12.
    Kim, J.W., Cho, S.H., Il-Min, K.: Workload-based column partitioning to efficiently process data warehouse query. Int. J. Appl. Eng. Res. 11(2), 917–921 (2016)Google Scholar
  13. 13.
    Meta Data Coalition Open Information Model Version 1.1, August 1999Google Scholar
  14. 14.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Elsevier Inc, Amsterdam (2006)zbMATHGoogle Scholar
  15. 15.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIG MOD Conference, Washington DC, USA, May 1993 (1993)Google Scholar
  16. 16.
    Mitchell, M.: An Introduction to Genetic Algorithms. A Bradford Book. The MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    TPC-DS database. http://www.tpc.org/tpcds. Accessed 21 Nov 2017

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khadija Letrache
    • 1
    Email author
  • Omar El Beggar
    • 1
  • Mohammed Ramdani
    • 1
  1. 1.Informatics Department, LIM Laboratory, Faculty of Sciences and Techniques of MohammediaUniversity Hassan IICasablancaMorocco

Personalised recommendations