Advertisement

Short Paper: Tight Bounds for Universal and Cautious Self-stabilizing 1-Maximal Matching

  • Michiko InoueEmail author
  • Sébastien Tixeuil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11028)

Abstract

We consider the problem of constructing a matching in an n-nodes graph in a distributed and self-stabilizing manner. We prove that there exists a lower bound in space of \(\varOmega (n\log n)\) bits for universal maximal matching algorithms, and a lower bound in time of \(\varOmega (e)\) moves for universal and cautious 1-maximal matching algorithms. A side contribution of our result is the optimality in both time and space of the self-stabilizing 1-maximal matching algorithm of Inoue et al. [8].

References

  1. 1.
    Asada, Y., Ooshita, F., Inoue, M.: An efficient silent self-stabilizing 1-maximal matching algorithm in anonymous networks. J. Graph Algorithms Appl. 20(1), 59–78 (2016).  https://doi.org/10.7155/jgaa.00384MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Callan, D.: A combinatorial survey of identities for the double factorial. arXiv preprint arXiv:0906.1317 (2009)
  3. 3.
    Cohen, J., Maâmra, K., Manoussakis, G., Pilard, L.: Polynomial self-stabilizing maximal matching algorithm with approximation ratio 2/3. In: International Conference on Principles of Distributed Systems (2016)Google Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974).  https://doi.org/10.1145/361179.361202CrossRefzbMATHGoogle Scholar
  5. 5.
    Goddard, W., Hedetniemi, S.T., Shi, Z., et al.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 797–803 (2006)Google Scholar
  6. 6.
    Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon without global identifiers. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 195–212. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_17CrossRefGoogle Scholar
  7. 7.
    Inoue, M., Ooshita, F., Tixeuil, S.: Brief announcement: efficient self-stabilizing 1-maximal matching algorithm for arbitrary networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, 25–27 July 2017, pp. 411–413. ACM (2017). https://doi.org/10.1145/3087801.3087840
  8. 8.
    Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon for arbitrary networks. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69084-1_7CrossRefGoogle Scholar
  9. 9.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation algorithm for the maximum matching problem. Theor. Comput. Sci. 412(40), 5515–5526 (2011).  https://doi.org/10.1016/j.tcs.2011.05.019MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nara Institute of Science and TechnologyIkoma, NaraJapan
  2. 2.Sorbonne Universités, LIP6 CNRS 7606 and IUFParisFrance

Personalised recommendations