Advertisement

Detection and Classification of Faulty Weft Threads Using Both Feature-Based and Deep Convolutional Machine Learning Methods

  • Marcin Kopaczka
  • Marco Saggiomo
  • Moritz Güttler
  • Kevin Kielholz
  • Dorit Merhof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11351)

Abstract

In our work, we analyze how faulty weft threads in air-jet weaving machines can be detected using image processing methods. To this end, we design and construct a multi-camera array for automated acquisition of images of relevant machine areas. These images are subsequently fed into a multi-stage image processing pipeline that allows defect detection using a set of different preprocessing and classification methods. Classification is performed using both image descriptors combined with feature-based machine learning algorithms and deep learning techniques implementing fully convolutional neural networks. To analyze the capabilities of our solution, system performance is thoroughly evaluated under realistic production settings. We show that both approaches show excellent detection rates and that by utilizing semantic segmentation acquired from a fully convolutional network we are not only able to detect defects reliably but also classify defects into different subtypes, allowing more refined strategies for defect removal.

References

  1. 1.
    Wada, Y.: Optical weft sensor for a loom (1984) US Patent 4,471,816Google Scholar
  2. 2.
    Karayiannis, Y.A., et al.: Defect detection and classification on web textile fabric using multiresolution decomposition and neural networks. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, Proceedings of ICECS 1999, vol. 2, pp. 765–768. IEEE (1999)Google Scholar
  3. 3.
    Kumar, A.: Computer-vision-based fabric defect detection: a survey. IEEE Trans. Industr. Electron. 55, 348–363 (2008)CrossRefGoogle Scholar
  4. 4.
    Ngan, H.Y., Pang, G.K., Yung, N.H.: Automated fabric defect detection-a review. Image Vis. Comput. 29, 442–458 (2011)CrossRefGoogle Scholar
  5. 5.
    Hanbay, K., Talu, M.F., Özgüven, Ö.F.: Fabric defect detection systems and methods-a systematic literature review. Optik Int. J. Light Electron. Opt. 127, 11960–11973 (2016)CrossRefGoogle Scholar
  6. 6.
    Kopaczka, M., Saggiomo, M., Guettler, M., Gries, T., Merhof, D.: Fully automatic faulty weft thread detection using a camera system and feature-based pattern recognition. In: Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 124–132 (2018)Google Scholar
  7. 7.
    Sari-Sarraf, H., Goddard, J.S.: Vision system for on-loom fabric inspection. IEEE Trans. Ind. Appl. 35, 1252–1259 (1999)CrossRefGoogle Scholar
  8. 8.
    Stojanovic, R., Mitropulos, P., Koulamas, C., Karayiannis, Y., Koubias, S., Papadopoulos, G.: Real-time vision-based system for textile fabric inspection. Real Time Imaging 7, 507–518 (2001)CrossRefGoogle Scholar
  9. 9.
    Schneider, D., Holtermann, T., Merhof, D.: A traverse inspection system for high precision visual on-loom fabric defect detection. Mach. Vis. Appl. 25, 1–15 (2014)CrossRefGoogle Scholar
  10. 10.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12, 55–73 (1990)CrossRefGoogle Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  12. 12.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefGoogle Scholar
  13. 13.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefGoogle Scholar
  14. 14.
    Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)Google Scholar
  15. 15.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcin Kopaczka
    • 1
  • Marco Saggiomo
    • 2
  • Moritz Güttler
    • 1
  • Kevin Kielholz
    • 1
  • Dorit Merhof
    • 1
  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenGermany
  2. 2.Institut für TextiltechnikRWTH Aachen UniversityAachenGermany

Personalised recommendations